Supporting Information #### The search query used in PUBMED #### Table S1 Primary CoQ10 deficiency patients identified by literature search. #### S1.1 Primary CoQ₁₀ deficiency-2 (COQ10D2; 614651) due to mutations in the PDSS1 gene [# of patients: 2] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) | Age at onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ_{10} dose and responses | Age at last
reported exam
or death | Corresponding
PI | Reference | |-------------------------|--|----------------|---|-----------------------------------|--|---|--|-------------------------------|--|--|-----------------------| | PDSS1
[1] | 2 (1) | D308E
(HOM) | <5%
(fibroblasts) | 1-3 y/o
(M) | encephalopathy, deafness, cardiac
valvulopathy, livedo reticularis,
mild mental retardation,
macrocephaly, peripheral
neuropathy, bulimia, obesity, and
optic atrophy | mildly elevated
blood lactate,
mitochondrial
aggregates in the
muscle | CII+CIII↓, G3PDH+CIII↓, CII+CIII/CS↓ (fibroblasts), CI+CIII/CI↓, CIII/CI+CIII↑ (muscle mitochondria) | no data | 22 years of age | Agnès Rötig,
Hôpital Necker-
Enfants
Malades, | (Mollet et al., 2007) | | PDSS1 [2] | | D308E
(HOM) | <5%
(fibroblasts) | 2 y/o
(F) | deafness, cardiac valvulopathy,
obesity, macrocephaly, optic
atrophy, peripheral neuropathy,
livedo reticularis, mental
retardation | mildly elevated
blood lactate | no data | no data | 14 years of age | France | | #### S1.2 Primary CoQ₁₀ deficiency-3 (COQ10D3; 614652) due to mutations in the *PDSS2* gene [# of patients: 4] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) | Age at onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and responses | Age at last
reported
exam or death | Corresponding
PI | Reference | |-------------------------|--|-------------------------|---|-----------------------------------|---|---|--|--|--|--|---| | PDSS2
[1] | 1 (1) | Q332X/
S382L
(CH) | ~ 14%
(muscle)
~ 12%
(fibroblasts) | 3 m/o
(M) | NS, hypotonia, Leigh syndrome, seizure | blood lactate↑,
serum albumin↓,
proteinuria
mitochondrial
aggregates in
muscle | CII+CIII↓
(fibroblasts and
muscle) | 50mg/day beginning at age 3 months, no response [NR] | died at age of
8 months | Michio Hirano,
Columbia
University
medical center,
USA | (Lopez et al., 2006; Quinzii et al., 2008; Salviati et al., 2012) | | PDSS2 [2] | 1 (1) | S382L
(HOM) | no data | 1.9 y/o
(M) | SRNS, cerebral palsy, intellectual disability | no data | no data | no data | no data | Friedhelm
Hildebrandt, | | | PDSS2 | 1
(1) | A384D
(HOM) | no data | neonatal
(M) | SRNS | no data | no data | no data | no data | Boston
Children's
Hospital, USA | (Sadowsk
i et al.,
2015) | |--------------|----------|---|---------|-----------------|---|--------------------------------|---------|-------------------------------|--|---|--------------------------------| | PDSS2
[4] | 1 (1) | H162R/
c.1042_11
48-
2816del
(CH) | no data | neonatal
(M) | NS, encephalomyopathy,
hypertrophic cardiomyopathy,
deafness, retinitis pigmentosa,
global developmental delay | blood lactate↑,
proteinuria | no data | 20mg/kg/day, no response [NR] | died at age of
8 months (1
month after
admission) | Béla Iványi,
University of
Szeged,
Hungary | (Ivanyi et al., 2018) | # S1.3 Primary CoQ₁₀ deficiency-1 (COQ10D1; 607426) due to mutations in the COQ2 gene [# of patients: 25] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and responses | Age at last
reported
exam or death | Corresponding
PI | Reference | |-------------------------|--|-------------------------|--|-----------------------------------|--|---|--|---|--|---|--| | COQ2
[1] | 1 (1) | R197H/
N228S
(CH) | ~ 36%
(fibroblasts)
<3%
(kidney,
muscle) | 18 m/o
(M) | SRNS | normal blood
lactate | CII+CIII↓
(muscle) | 30mg/kg/day since age 21
months, response not
described | 29 months of
age, ESRF at
age 20
months | Francesca Diomedi- Camassei, Bambino Gesu` Children's Hospital, Italy | (Diomedi
-
Camassei
et al.,
2007;
Quinzii et
al., 2010) | | COQ2
[2] | 1 (1) | S146N
(HOM) | ~ 17%
(fibroblasts)
<3%
(kidney,
muscle) | neonatal
(M) | glomerulonephritis, acute renal
failure, seizure, epileptic
encephalopathy | CSF lactate↑ | CII+CIII↓ (muscle) | no data | died at 6
months of age | Francesca
Diomedi-
Camassei
Bambino Gesu`
Children's
Hospital, Italy | (Diomedi
-
Camassei
et al.,
2007)
(Bujan et
al., 2014) | | COQ2
[3] | 2 (1) | Y297C
(HOM) | ~18%
(fibroblasts)
~ 37.5%
(muscle) | 11 m/o
(M) | infantile encephalomyopathy,
SRNS/FSGS, hypotonia, optic
atrophy, tremors, psychomotor
regression | normal lactate
levels, proteinuria;
myofibers with
excessive
succinate
dehydrogenase
staining | CI+CIII ↓, CII+CIII
↓ (muscle), CII+CIII
↓ (fibroblasts) | 30 mg/kg/day beginning at age 22months, neurologic picture improved, but no change in renal function [NR] | ESRF at age
18 months,
kidney
transplant at
age of 3 years | Michio Hirano,
Columbia
University
medical center,
USA | (Diomedi - Camassei et al., 2007; Montini et al., 2008; Quinzii et al., 2006; Quinzii et al., 2008; Salviati et al., 2005) | | COQ2
[4] | | Y297C
(HOM) | ~ 17%
(fibroblasts) | 12 m/o
(F) | NS/FSGS without any clinical signs of neurologic involvement. | proteinuria.
hypoalbuminemia | CII+CIII ↓
(fibroblasts) | ^30 mg/kg/day, there was no improvement during the first 2 weeks of treatment; an episode of acute renal failure required continuous hemofiltration for | 5 years of age | Michio Hirano,
Columbia
University
medical center,
USA | (Diomedi - Camassei et al., 2007; Montini | | | | | | | | | | 4 days. 20 days after the initiation of the treatment, recovery of renal function and a reduced level of proteinuria was observed. After 50 months of therapy, renal function remains normal, though proteinuria was still present (other medication: diuretics) [NR] | | | et al.,
2008;
Quinzii et
al., 2006;
Quinzii et
al., 2008;
Salviati et
al., 2005) | |--------------|----------|----------------------------------|--|-----------------|---|--|---|---|----------------------------|---|---| | COQ2
[5] | 1
(1) | N401fsX
415
(HOM) | ~ 24%
(fibroblasts) | neonatal
(F) | Infantile multiorgan failure
(neurologic distress, liver failure,
NS, anemia, pancytopenia,
insulin-dependent diabetes, and
seizures) | no data | CI+CIII ↓, CII+CIII
↓ (liver) | no data | died at 12
days | Agnès
Rötig,
Hôpital Necker-
Enfants
Malades, France | (Mollet et
al., 2007;
Quinzii
and
Hirano,
2010) | | COQ2
[6] | 1
(1) | L234fsX2
47/
N228S
(CH) | no data | 2 y/o
(F) | SRNS | no data | no data | no data | 4 years of age | Moin A.
Saleem,
Southmead
Hospital, UK | (McCarth
y et al.,
2013) | | COQ2
[7] | 2 | A302V
(HOM) | ~ 29.2%
(muscle) | neonatal
(F) | generalized edema, seizures,
apnea, hypotonia, dystonic-hyper
kinetic movement, feeding
problems | blood lactate↑ | CII+CIII↓ (muscle, fibroblasts) | no data | died at age of 5 months | R.J.T.
Rodenburg,
Radboud
University, The
Netherlands | (Jakobs et al., 2013) | | COQ2
[8] | (1) | A302V
(HOM) | ~ 8.5%
(fibroblasts),
3.4%
(muscle) | neonatal
(M) | generalized edema, seizures,
apnea, hypotonia, dystonic-hyper
kinetic movement, feeding
problems | blood lactate↑,
muscle histology
is normal | CI↓, CIII↓, CII+CIII↓, ATP↓ (muscle), CII+CIII↓(fibroblast s) | no data | died at age of
6 months | R.J.T.
Rodenburg,
Radboud
University, The
Netherlands | (Jakobs et
al., 2013;
Ziosi et
al., 2017) | | COQ2
[9] | 1
(1) | S109N
(HOM) | ~ 11.4%
(fibroblasts) | neonatal
(M) | peripheral hypertonia,
cardiomyopathy, hypertrophic
cardiomegaly, nephrotic
syndrome | CSF lactate ↑,
proteinuria | CII+CIII↓(kidney) | 30mg/kg/day, no response [NR] | died at age of 5 months | Emmanuel Scalais, Centre Hospitalier de Luxembourg, Luxembourg | (Scalais
et al.,
2013;
Ziosi et
al., 2017) | | COQ2
[10] | 1
(1) | S146N/
R387X
(CH) | no data | neonatal
(F) | acidosis, hyperglycemia,
cardiomegaly,
respiratory distress, necrotizing
enterocolitis, encephalopathy | blood lactate↑ | CI↓, CII↓, CS↑
(muscle) | no data | died at age of 2 months | D. Dinwiddie,
University Of
New Mexico,
USA | (Dinwidd ie et al., 2013) | | COQ2
[11] | 2 | M128V-
V393A
(HOM) | <20%
(brain) | 68 y/o
(F) | multiple system atrophy with
predominant parkinsonism,
retinitis pigmentosa | no data | no data | no data | died | Chaii Tanii | (Multiple | | COQ2
[12] | (1) | M128V-
V393A
(HOM) | no data | 62 y/o
(M) | multiple system atrophy with
predominant parkinsonism,
ataxia, retinitis pigmentosa | no data | no data | no data | died | Shoji Tsuji,
University of
Tokyo
Japan | -System
Atrophy
Research, | | COQ2
[13] | 2
(1) | M387X/
V393A
(CH) | no data | 50 y/o
(F) | multiple system atrophy of the cerebellar type | no data | no data | no data | no data | заран | 2013) | | COQ2
[14] | | M387X/
V393A
(CH) | no data | 44 y/o
(M) | multiple system atrophy of the cerebellar type | no data | no data | no data | no data | | | |--------------|----------|---------------------------------|---------|----------------|--|--|---------|---|---|---|----------------------------------| | COQ2
[15] | 1 (1) | N228S
(HOM) | no data | no data
(M) | SRNS | no data | no data | no data | no data | | | | COQ2
[16] | 1
(1) | R173H/
N228S
(CH) | no data | 2.5 y/o
(M) | SRNS | no data | no data | no data | no data | Friedhelm
Hildebrandt,
Boston | Sadowski
et al., | | COQ2
[17] | 1
(1) | N228S/
L286F
(CH) | no data | 1.3 y/o
(F) | SRNS | no data | no data | no data | no data | Children's
Hospital, USA | 2015) | | COQ2
[18] | 1
(1) | Y297C
(HOM) | no data | 5 m/o
(M) | SRNS | no data | no data | no data | no data | | | | COQ2
[19] | 2 | G390A
(HOM) | no data | 18 y/o
(F) | SRNS/FSGS | dysmorphic
mitochondria
(kidney) | no data | treated, response not described | kidney
transplant at
age 20 years | L Gesualdo,
University | (Gigante et al., | | COQ2
[20] | (1) | G390A
(HOM) | no data | 16 y/o
(F) | SRNS/FSGS | dysmorphic
mitochondria
(kidney) | no data | treated, response not described | kidney
transplant at
age 19 years | "Aldo Moro",
Italy | 2017) | | COQ2
[21] | | c.288dup
C/
R126G
(CH) | no data | 25 y/o
(M) | diffuse glomerulosclerosis, end-
stage nephropathy, retinopathy | no data | no data | 30 mg/kg/day for 6 months,
no ERG improvement, but | 25 years of age | Stephen H. | | | COQ2
[22] | 3
(1) | c.288dup
C/
R126G
(CH) | no data | 21 y/o
(M) | mesangial sclerosis, end-stage
nephropathy,
retinopathy,
lymphoma | no data | no data | best
corrected visual acuity and
areas of retinal atrophy on
autofluorescence were noted | 32 years of
age, kidney
transplant at
age 5 years | Tsang,
Columbia
University
Irving Medical | (Abdelha
kim et al.,
2020) | | COQ2
[23] | | c.288dup
C/
R126G
(CH) | no data | 23 y/o
(F) | retinopathy, end-stage
nephropathy | no data | no data | to be stable on treatment [NR] | 28 years of
age, kidney
transplant at
age 10 years | Center, USA | | | COQ2
[24] | | Y353C/
T325A
(CH) | no data | 2 y/o
(M) | SRNS/FSGS | no data | no data | no data | died of ESRF
at 5 years of
age | Liangzhong | | | COQ2
[25] | 2 (1) | Y353C/
T325A
(CH) | no data | 7 m/o
(F) | SRNS | no data | no data | 30 mg/kg/ day beginning at age 11 months, urinary protein decreased with the increasing dose of CoQ ₁₀ , now on the dosage of 600mg/day [Obj.] | normal
growth at 4
years old | Sun,
Southern
Medical
University,
China | (Li et al., 2021) | ## S1.4 Primary CoQ₁₀ deficiency-7 (COQ10D7; 616276) due to mutations in the COQ4 gene [# of patients: 32] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of
CoQ ₁₀
(% of control) ¹ | Age at onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and response | Age at last
reported
exam or death | Corresponding
PI | References | |-------------------------|--|--------------------------------------|--|-----------------------------------|---|---|---|---|--|---|--| | COQ4
[1] | 1 (1) | mono-
allelic
deletion
(CH) | ~ 43%
(fibroblasts) | neonatal
(M) | dysmorphic features, mental retardation, encephalomyopathy | blood lactate in
normal range,
increased SDH
staining in the
muscle | CII+CIII↓
(fibroblasts) | 30 mg/kg/day, improvement in physical status and social function. Conditions worsened (weakness and diffuse myalgia) after formulation change and dosage reduction to 2mg/kg/day. Remission of symptoms within a week after reverting back to the original dosage. Then switched to 15mg/kg/day of ubiquinol [Obj.] | 3 years of age | Plácido Navas,
Universidad
Pablo de
Olavide, Spain | (Salviati
et al.,
2012) | | COQ4
[2] | 1 (1) | R145G
(HOM) | ~ 41-54%
(fibroblasts),
~ 23%
(muscle) | neonatal
(M) | hypotonia, areflexia,
acrocyanosis,
bradycardia, respiratory
insufficiency, left ventricular
hypoplasia | blood lactate [†] ,
blood creatine
kinase [†] | CI+CIII↓,
CII+CIII↓, CI↓
(autoptic muscle),
CII+CIII↓
(fibroblasts) | not treated | died at 4
hours after
birth | Holger
Prokisch,
Technische
Universität
München,
Germany | (Brea-
Calvo et
al., 2015;
Ziosi et
al., 2017) | | COQ4
[3] | 1 (1) | R141X/
G240C
(CH) | no data | neonatal
(F) | respiratory failure, lactic acidosis, cardiomyopathy, heart failure | urinary and
plasmatic amino
acids,
organic acids, and
acylcarnitine are
normal | CI ↓, CII ↓, CIII ↓,
CIV ↓, CI+CIII ↓
(autoptic muscle) | not treated | died at 4
hours after
birth | | | | COQ4
[4] | | L52S/
T174del
(CH) | ~ 2%
(muscle) | neonatal
(F) | distal arthrogryposis, respiratory
distress, encephalopathy,
multiorgan failure | blood lactate↑ | CIV↓, CII+CIII↓
(autoptic muscle) | not treated | died at 3 days
after birth | | | | COQ4
[5] | 2 (1) | L52S/
T174del
(CH) | ~ 3%
(muscle) | neonatal
(F) | respiratory distress, encephalopathy | blood lactate†,
amino acids in
plasma†, analysis
of urinary organic
acids showed
mitochondrial
dysfunctional
excretion pattern | CIII↑, CIV↑
(autoptic muscle) | not treated | died at 2 days
after birth | Holger
Prokisch,
Technische
Universität
München,
Germany | (Brea-
Calvo et
al., 2015) | | COQ4
[6] | 1 (1) | P64S
(HOM) | ~ 63%
(muscle) | 10 m/o
(M) | motor deterioration, ataxia,
epileptic seizures, swallowing
impairment, progressive scoliosis,
cognitive deterioration | blood tests
excluded
liver and
kidney
involvement and
showed no lactic
acidosis | CI↓, CIII↓, CI+CIII
↓ (muscle) | treated, response not described | 17 years of age | | | | COQ4
[7] | 2 (1) | L82Q/
R158Q
(CH) | ~ 16%
(muscle) | neonatal
(F) | seizures, severe lactic and respiratory acidosis, heart failure | blood and CSF
lactate↑, plasma
alanine↑,
increased
mitochondrial size
in the muscle | CII+CIII↓ (muscle) | ^20 mg/kg/day beginning at the first day of life, which resulted in normalization of lactate and improvement in cardiac function. Nevertheless, the patient continued exhibiting intermittent episodes of lactic acidemia and cardiac decompensation until death (other medications: thiamine, riboflavin, hydroxocobalamin, biotin) [NR] | died at 2
months of age | | | |--------------|----------|---------------------------------------|---|-----------------|--|---|--|---|--------------------------------|---|----------------------------------| | COQ4
[8] | | not tested | no data | neonatal
(F) | respiratory distress, metabolic acidosis, apnoeic/gasping episode | no data | no data | not treated | died
at 36 hours of
life | | | | COQ4
[9] | 1
(1) | R240C
(HOM) | no data | neonatal
(F) | hypotonia, cardiomyopathy,
cerebellar and brainstem
hypoplasia | lactic and pyruvic aciduria | normal ETC
complex activities
(muscle) | not treated | died at 4 days
of life | Marwan
Shinawi, | | | COQ4
[10] | 2 (1) | R66Q/
D68H
(CH) | no data | neonatal
(F) | seizure, respiratory distress,
intractable epilepsy, hypotonia,
feeding difficulties,
cardiomyopathy, and global
developmental delay | blood lactate in
normal range, a
slight increase of
CSF lactate | no data | no data | died at age of
19 months | Washington
University
School of
Medicine, USA | (Chung et al., 2015) | | COQ4
[11] | | not tested | no data | neonatal
(F) | hypotonia, metabolic acidosis, | blood lactate↑,
urinary malate and
fumarate↑ | no data | no data | died at age of
10 weeks | | | | COQ4
[12] | 1 (1) | R240C
(HOM) | no data | neonatal
(F) | poor/absent reflexes, cardiac
hypertrophy, left hip dysplasia,
hypotonia, episodes of apnea and
bradycardia | normal lactate, pyruvate, ammonia, creatine phosphokinase, acylcarnitine and plasma amino acids, increased lactic acid, 2- ketoglutaric acid, fumarate and 2- hydroxyglutaric acid in urine, CSF lactate↑ | no data | ^15 mg/kg/day beginning at age 1 month, no response [other medications: pyridoxal phosphate, folinic acid, and riboflavin] [NR] | died at 7
weeks old | | | | COQ4
[13] | 1
(1) | V8AfsX1
9/D111Y
+ P119L
(CH) | ~ 21%
(muscle)
~ 34%
(fibroblasts) | neonatal
(M) | seizure, ventricular hypertrophy,
bilateral hearing loss, hypotonia | blood lactate↑ | CI+CIII↓, CII+CIII↓
(fibroblasts) | no data | died at 4
months old | Ali B. Naini,
Columbia
University
Medical Center,
USA | (Sondhei
mer et al.,
2017) | | COQ4
[14] | 2 (1) | T77I
(HOM) | no data | 4 y/o
(M) | tremors, dysarthria, seizure,
spastic tetraparesis and ataxia | no data | no data | 1000mg/day beginning at age 13, the 6 min walk test was | 15 years of age | Jan-Maarten
Cobben, | (Bosch et al., 2018) | | | | | | | | 1 | | stable over the period of a year [NR] 1000mg/day beginning at age 11, the 6 min walk test was | | University of
Amsterdam, the
Netherlands | | |--------------|-------|-------------------------|-------------------------|-----------------|---|--|--|---|-----------------------|--|-----------------------------------| | COQ4
[15] | | T77I
(HOM) | ~ 22%
(fibroblasts) | 9 y/o
(F) | seizure, dysarthria, spastic
tetraparesis, ataxia | general
laboratory tests
were normal | no data | stable over a year, developed a second stroke-like episode at age 14 [NR] | 14 years of age | | | | COQ4
[16] | | G124S
(HOM) | no data | neonatal
(M) | motor deterioration,
weak responsiveness, hearing
impairment, dystonia, seizure,
tachycardia, respiratory distress | blood lactate↑,
glucose↑, blood
ammonia↑, no
evidence of renal
impairment | no data | no data | died at 5.6
months | Qiwei Guo, | | | COQ4
[17] | 2 (1) | G124S
(HOM) | ~ 50%
(fibroblasts) | neonatal
(F) | motor deterioration,
weak responsiveness, dystonia,
nystagmus, respiratory distress,
seizure | blood lactate↑,
glucose↑, blood
ammonia↑ | CII+CIII↓
(fibroblasts) | △50 mg/kg/day, improvement
in seizure, screaming, and
respiratory distress, no
improvement in nystagmus,
dystonia, psychomotor
development, and ambulation
[NR] | 1 year of age | Xiamen
University,
China | (Lu et al.,
2019) | | COQ4
[18] | 1 (1) | P193S/
R240C
(CH) | ~ 95%
(fibroblasts) | 2.5 y/o
(M) | developmental delay, hypotonia,
sialorrhea, spasticity, ataxia | no data | no change of
CII+CIII activity
(fibroblasts) | 30 mg/kg/day of ubiquinol, improvement in neuromuscular symptoms after 2 months, further improvement of motor skills in the following months, but speech delay and cognitive impairment persisted [Subj.] | 2.7 years of age | Maria
Marchese,
IRCCS
Fondazione
Stella Maris, | (Mero et al., 2021) | | COQ4
[19] | 1 (1) | G95D/
R102H
(CH) | ~ 98%
(fibroblasts) | 5 y/o
(F) | cognitive impairment, dysmetria, spastic ataxia, seizure | no data | no change of CII+CIII activity (fibroblasts), normal RCC activities (muscle) | 100mg/kg/day of ubiquinol,
no response after 6 months
(as assessed by the SARA
scale) [NR] | 19 years of age | Italy | | | COQ4
[20] | 2 | G55V | normal range
(blood) | 8 y/o
(M) | ataxia, spasticity, epilepsy,
cognitive deterioration,
dysarthria, dysmetria and
dysdiadochokinesia | no data | no data | 2000 mg/day, improvement of SARA score, dysarthria is persistent [obj.] | 27 years of age | Margit Burmeister, | (Caglaya | | COQ4
[21] | (1) | (HOM) | normal range
(blood) | 8 y/o
(F) | dysarthria, spastic ataxia,
epilepsy, cognitive deterioration,
dysmetria,
dysdiadochokinesia | no data | no data | Treated, dose not described, improvement of SARA score, gait difficulty and dysarthria are persistent [obj.] | 28 years of age | University of
Michigan, USA | n et al.,
2019) | | COQ4
[22] | 1 (1) | E161D
(HET) | ~ 25%
(fibroblasts) | 4 y/o
(F) | mental retardation,
rhabdomyolysis | muscle damage, rhabdomyolysis, disorganized intermyofibrillar pattern, SDH and COX staining↓ in the muscle | CI+CIII↓, CII+CIII
↓
(fibroblasts) | no data | 4 years of age | Pablo
Menendez,
CIBERONC,
Spain | (Romero-
Moya et
al., 2017) | | COQ4
[23] | 1 (1) | G124S/
c.402+1
G>C
(CH) | low
(fibroblasts) | neonatal
(M) | encephalopathy, cardiomyopathy,
visual and hearing impairment,
respiratory failure, apnea,
developmental delay | blood lactate↑ | CII+CIII↓
(fibroblasts) | 40 mg/kg/day beginning at 5 months of age, poor response [NR] | died at 8
months of age | | | |--------------|----------|----------------------------------|----------------------|-----------------|---|-----------------------------------|----------------------------|--|-----------------------------|--|-------------------| | COQ4
[24] | 1 (1) | G124S/
c.402+1
G>C
(CH) | no data | neonatal
(M) | cardiomyopathy, respiratory
distress, metabolic acidosis | blood lactate and alanine↑ | no data | △15 mg/kg/day, no response [other medication: carnitine] [NR] | died at 2.5
days of age | | | | COQ4
[25] | 1 (1) | G124S
(HOM) | no data | neonatal
(F) | cardiomyopathy, seizure,
developmental delay | blood lactate↑,
hyperammonemia | no data | △ treated, dose not described,
cardiac function improved
gradually and normalized
after 10 days [other
medication: intravenous
immunoglobulin] [NR] | 9 months of age | | | | COQ4
[26] | 2 (1) | G124S/
c.402+1
G>C | no data | neonatal
(F) | seizure, apnea, encephalopathy, cardiomyopathy | blood lactate↑ | no data | started at the age of 4 years
and 5 months, dose not
described, no response
observed after 1
month of
treatment [NR] | 4.5 years of age | | | | COQ4
[27] | (1) | (CH) | no data | 2 m/o
(F) | seizure, respiratory distress, cardiomegaly | blood lactate↑ | no data | started at 1 year of age, dose
not described, no response,
passed away 1 month later
/NR1 | died at 1.1
years of age | Brian Hon-Yin
Chung,
Hong Kong
Children's | (Yu et al., 2019) | | COQ4
[28] | 1
(1) | W184R/
c.402+1
G>C
(CH) | low
(fibroblasts) | 8 m/o
(M) | microcephaly, developmental
delay, dystonia, visual
impairment, oro-motor
dysfunction | blood lactate and alanine↑ | CII+CIII↓
(fibroblasts) | dose not described, no response [NR] | 3.6 years of age | Hospital, China | | | COQ4
[28] | 1
(1) | G124S
(HOM) | low
(fibroblasts) | infancy
(F) | visual impairment, dystonia,
spasticity, developmental delay | blood lactate↑ | CII+CIII↓
(fibroblasts) | since age of 2, dose not described, no response [NR] | died at 3.5
years of age | | | | COQ4
[30] | 1 (1) | G124V/
G124S
(CH) | low
(fibroblasts) | infancy
(F) | encephalopathy, dystonia,
spasticity, developmental delay,
visual impairment, seizure | blood lactate and alanine↑ | CII+CIII↓
(fibroblasts) | △beginning at 9 months of age, dose not described, subjective improvement in response [other medication: levetiracetam] [NR] | 3.3 years of age | | | | COQ4
[31] | 1
(1) | G124S
(HOM) | low
(fibroblasts) | 2 m/o
(M) | encephalopathy, spasms, seizure, development delay | blood lactate↑ | CII+CIII↓
(fibroblasts) | beginning at 7 years of age,
dose not described, response
not described | 8 years of age | | | | COQ4
[32] | 2 (1) | G124S
(HOM) | no data | 2 m/o
(F) | hypotonia, developmental delay,
bilateral cortical blinding, seizure,
cardiomyopathy | blood lactate↑ | no data | 30mg/kg/day beginning at 11 months of age, some improvement in seizure control and development [Subj.] | 1.5 years of age | | | ## S1.5 Primary CoQ₁₀ deficiency-9 (COQ10D9; 619028) due to mutations in the COQ5 gene [# of patients: 3] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at
onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and response | Age at last
reported
exam or death | Corresponding
PI | Reference | |-------------------------|--|------------------------------------|--|--------------------------------------|--|---|-----------------------------|---|--|---|--------------------------------| | COQ5 | | biallelic | ~ 57%
(muscle)
~ 50%
(leukocytes) | childhood
(F) | ataxia, dysarthria, seizures, cognitive disability, behavioral problems, epilepsy, myoclonus, dysarthric cerebellar speech, dysmetria, mild tremors and mild lower limb spasticity | liver and renal
function tests,
carnitine and acyl-
carnitine, lactate,
pyruvate,
ammonia, blood
amino acid
profile, urine for
protein and
organic acids,
were within
normal limits. | CII + III↓
(fibroblasts) | dose not described, improvement of ICARS scoring after 3 months, the patient appeared to have a quicker response rate during conversation and better alertness [Obj.] | 17 years of age | Yair Anikster,
Bruria Ben- | | | COQ5
[2] | 3 (1) | duplicati
on of last
4 exons | ~ 66%
(leukocytes) | childhood
(F) | mild static gait ataxia, mild
dysarthria, mild dysmetria and
oculomotor apraxia, and
horizontal nystagmus | no data | no data | dose not described,
improvement of ICARS
scoring after 3 months, the
patient appeared to have a
quicker response rate during
conversation and better
alertness [Obj.] | 22 years of age | Zeev,
Edmond
and Lily Safra
Children's
Hospital, Israel | (Malicda
n et al.,
2018) | | COQ5
[3] | | | ~ 60%
(leukocytes) | childhood
(F) | mild motor delay, mild learning
difficulties, mild cerebellar
ataxia, mild
cerebellar dysarthria and
horizontal nystagmus | no data | no data | dose not described, improvement of ICARS scoring after 3 months, the patient appeared to have a quicker response rate during conversation and better alertness [Obj.] | 14 years of age | | | ## S1.6 Primary CoQ₁₀ deficiency-6 (COQ10D6; 614650) due to mutations in the COQ6 gene [# of patients: 28] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and response | Age at last
reported
exam or death | Corresponding
PI | Reference | |-------------------------|--|----------------|--|-----------------------------------|-------------------|--|-------------|-------------------------------------|---|--------------------------------|------------------| | COQ6
[1] | 4 | G255R
(HOM) | no data | 6.4 y/o | SRNS, SND | no data | no data | not treated | 6.5 years of
age; ESRF at
age of 9.3
years | Friedhelm
Hildebrandt, | (Heeringa | | COQ6
[2] | (1) | G255R
(HOM) | no data | 0.3 y/o | SRNS, SND | no data | no data | not treated | died at age of
17.5 years | University of
Michigan, USA | et al.,
2011) | | COQ6
[3] | | G255R
(HOM) | no data | 1.2 y/o | SRNS, SND, ataxia | no data | no data | not treated | died at age of
6.5 years | | | | | | | | | | | | | 1 | 1 | 1 | |--------------|----------|----------------------------------|---------|----------------|---|--|---------|--|--|---|---| | COQ6
[4] | | not tested | no data | <1 y/o | SRNS, congenital SND | no data | no data | not treated | died at 5
years old | | | | COQ6
[5] | | G255R
(HOM) | no data | 0.3 y/o | SRNS, seizure | no data | no data | not treated | died, age of
death not
described | | | | COQ6
[6] | | G255R
(HOM) | no data | 0.3 y/o | SRNS, SND, facial dysmorphism | no data | no data | 100mg/day, improvement of SND [NR] | ESRF at age of 0.4 year | | | | COQ6
[7] | 3 (1) | G255R
(HOM) | no data | 0.2 y/o | SRNS, SND, bilateral nephrolithiasis | no data | no data | △30mg/kg/day beginning at 2
months of age (together with
enalapril), a decrease of
proteinuria, SND and severe
growth retardation were
noted at 10 months of age | 15 months of age | | | | COQ6
[8] | | A353D
(HOM) | no data | 6.0 y/o | SRNS, SND | no data | no data | not treated | ESFR at age of 6.5 years | | | | COQ6
[9] | 2 (1) | A353D
(HOM) | no data | 2.5 y/o | SRNS, SND | no data | no data | beginning at age 5.5 years, dose not described, decrease of proteinuria but no hearing improvement, reoccurrence of proteinuria after temporary cessation of CoQ ₁₀ treatment and it decreased again after the treatment resumed [Obj.] | 6 years of age | | | | COQ6
[10] | 1
(1) | A353D
(HOM) | no data | 2.5 y/o | SRNS, seizure, white matter abnormalities | no data | no data | not treated | died, age of
death
unknown | | | | COQ6
[11] | 1
(1) | W447X/
Q461fsX4
78
(CH) | no data | 3.0 y/o | SRNS, SND | no data | no data | not treated | 3 years of age | | | | COQ6
[12] | 1
(1) | R162X/ | no data | no data | cyclosporine A-dependent NS | no data | no data | no data | no data | | | | COQ6
[13] | 1
(1) | W188X/ | no data | no data | diffuse mesangial sclerosis | no data | no data | no data | no data | | | | COQ6
[14] | 1
(1) | A353D
(HOM) | no data | 4 y/o
(M) | SRNS | no data | no data | no data | no data | Friedhelm | | | COQ6
[15] | 1
(1) | A353D
(HOM) | no data | 3.2 y/o
(M) | SRNS | no data | no data | no data | no data | Hildebrandt,
Boston | (Sadowsk
i et al., | | COQ6
[16] | 1
(1) | D385A/
Y412C
(CH) | no data | 4.5 y/o
(M) | SRNS | no data | no data | no data | no data | Children's
Hospital, USA | 2015) | | COQ6
[17] | 1 (1) | R360W/
c.804del
C
(CH) | no data | 2 y/o
(F) | steroid-resistant glomerulopathy, poor growth | proteinuria
(mostly during
respiratory tract
infection) | no data | 30 mg/kg/day, remission of
glomerulopathy after 1
month of treatment, growth
acceleration after 12 months
and a reduction of respiratory
airway infections [NR] | 4 years of age | Małgorzata
Stańczyk
University of
Lodz, Poland | (Koyun et
al., 2019;
Stanczyk
et al.,
2018) | | COQ6
[18] | 1
(1) | P261L
(HOM) | no data | 0.8
y/o
(M) | SRNS | no data | no data | treated, response not described | 4 years of age | L Gesualdo,
University of
Bari Aldo
Moro, Italy | (Gigante et al., 2017) | |--------------|----------|--------------------------|---------|----------------|---|---------|---|--|---|--|-------------------------------------| | COQ6
[19] | 1
(1) | K64del/
P261L
(CH) | no data | 3.8 y/o
(M) | steroid-resistant FSGS, mild
muscle weakness in the lower
extremities | no data | no data | no data | no data | | | | COQ6
[20] | 1
(1) | K64del/
Q229P
(CH) | no data | 1.8 y/o
(F) | SR-FSGS, exotropia with nystagmus | no data | no data | no data | no data | | | | COQ6
[21] | 1
(1) | K64del/
P261L
(CH) | no data | 3.9 y/o
(F) | SR-FSGS | no data | no data | no data | no data | Hae II Cheong,
Seoul National
University | (Park et al., | | COQ6
[22] | 1
(1) | K64del/
P261L
(CH) | no data | 2.7 y/o
(F) | SR-FSGS | no data | no data | no data | no data | Hospital, South
Korea | 2017a) | | COQ6
[23] | 1
(1) | K64del/
P261L
(CH) | no data | 1.3 y/o
(F) | SR-FSGS, optic nerve atrophy | no data | no data | no data | no data | | | | COQ6
[24] | 1
(1) | K64del/
P261L
(CH) | no data | 2.1 y/o
(M) | SR-FSGS, mild muscle weakness in the lower extremities | no data | no data | no data | no data | | | | COQ6
[25] | 2 (1) | A353D
(HOM) | no data | 5 y/o
(M) | SRNS, SND, optic atrophy | no data | normal CI+CIII and
CII+CIII activities
(muscle) | △15mg/kg/day of idebenone beginning at age of 17 years after the onset of optical symptoms, an improvement in the visual acuity after 2 months of treatment. After 13 months of treatment, the optical examination was stable, but the patient did not recover normal vision, still exhibiting persistent optic atrophy. After 3 years of treatment, minimal optic atrophy was reported. No change of the deafness status since treatment initiation. [other medications: immunosuppressive treatment] | Age of 18
years,
kidney
transplant at
age 6 | Justine Perrin,
Hôpital Sainte-
Musse, France | (Justine
Perrin et
al., 2020) | | COQ6
[26] | | A353D
(HOM) | no data | 4 y/o
(M) | SRNS, SND | no data | no data | △10mg/kg/day of idebenone since age 7, after 13 months of treatment, hearing loss was not changed and renal involvement remained stable with only Enalapril, demonstrated by negative proteinuria. | 8 years of age | | | | COQ6
[27] | 2 | Y83X/Q
461 | no data | 4 m/o
(F) | seizure, growth retardation,
proteinuria, atrial septal
defect, and pulmonary
hypertension | blood lactate↑,
lipids ↑, albumin↓,
urine organic acid
↑ | no data | not treated | died at age of 5 months | Lizhen Wang,
Wenzhou | (Wang et | |--------------|-----|---------------|---------|--------------|---|---|---------|-------------|----------------------------|-------------------------|------------| | COQ6
[28] | (1) | (CH) | no data | 3 m/o
(M) | proteinuria, growth retardation, and muscle hypotonia | blood lactate↑,
triglyceride ↑,
albumin↓, edema | no data | not treated | died at age of
4 months | Medical
University | al., 2021) | ## S1.7 Primary CoQ₁₀ deficiency-8 (COQ10D8; 616733) due to mutations in the COQ7 gene [# of patients: 6] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and response | Age at last
reported
exam or death | Corresponding
PI | References | |----------------------------|--|----------------------------------|--|-----------------------------------|---|--|--|---|--|---|---| | COQ7
[1] | 1 (1) | V141E
(HOM) | ~ 10%
(fibroblasts,
muscle) | neonatal
(M) | muscular hypotonia,
developmental retardation,
learning disabilities, hearing
impairment, visual dysfunction,
not able to sit and walk
independently | blood and CSF
lactate†/small
fiber size, no
abnormal
mitochondrial
structure observed
in the muscle | CI+CIII ↓, CII+CIII
↓ (fibroblasts),
CI+CIII ↓, CI ↓
(muscle) | initially treated with idebenone, switched to COQ ₁₀ after the diagnosis of a primary CoQ ₁₀ deficiency (around age of 10 years), dosage unknown, stalling the regression and significantly reducing the pain were noted [NR] | 9 years of age | Anna
Wredenberg,
Karolinska
Institutet,
Sweden | (Freyer et al., 2015) | | COQ7
[2] | 1 (1) | L111P
(HOM) | ~ 70%
(fibroblasts) | 14 m/o
(F) | spasticity, muscle wasting, inability to walk without support | CSF lactate↑ | no data | 22.8 mg/kg/day, no response after 3 months of treatment [NR] | 6 years of age | Siegfried
Hekimi, McGill
University,
Canada | (Wang et al., 2017b) | | COQ7
[3] | 1 (1) | K200Ifs
X56/
R107W
(CH) | ~ 12%
(fibroblasts) | neonatal
(M) | cardiomyopathy, growth
retardation, hypotonia, ptosis,
visual impairment, hearing
impairment, muscle weakness,
infantile spasms | blood lactate and alanine \(\), urinary lactate \(\), pyruvate \(\), and 3-hydroxybutyrate \(\), dicarboxylic aciduria, excretions of Kreb cycle intermediates \(\) | no data | Beginning at 2 months of age, and the dose was increased to 20 mg/kg/day at 12 months of life, the patient died around the same time [NR] | 1 year of age | Cheuk-Wing
Fung and Brian
HY. Chung,
Queen Mary
Hospital, China | (Kwong
et al,
2019) | | COQ7
[4] | 1 (1) | R54Q
(HOM) | ~ 55 %
(fibroblasts) | 15 m/o
(M) | hypotonia, difficulty walking,
motor developmental delay,
ataxia, and spasticity | no data | no data | not treated | 6 years of age | Evren Gumus,
Mugla Sitki
Kocman
University,
Turkey | https://doi
.org/10.1
016/j.ym
gmr.2022
.100877 | | COQ7
[5]
COQ7
[6] | 2
(1) | I66N/Y1
49C
(CH) | no data | Pediatric
(unknown) | axonal neuropathy, mild
neurodegenerative disorder | no data | no data | no data | no data | Hubert Smeets,
Maastricht
University,
Netherlands | (Theuniss
en et al.,
2018) | ## S1.8 Primary CoQ₁₀ deficiency-4 (COQ10D4; 612016) due to mutations in the COQ8A/ADCK3 gene [# of patients: 112] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and response ² | Age at last
reported
exam or
death | Corresponding
PI | References | |-------------------------|--|---|--|-----------------------------------|---|--|--|---|---|---|--| | COQ8A
[1] | 2 | R213W/
G272V
(CH) | ~ 29%
(muscle) | 18 m/o
(F) | hypotonia, <i>talus valgus</i> ,
developmental delay, seizure,
ataxia, epilepsia partialis continua | blood and CSF
lactate in normal
range | CI↑, CII↑, CIII↑,
CIV↑ (muscle) | 20 mg/kg/day
(350mg/day)
for 8 years, no response [NR] | 21 years of age | | (Mignot et al., 2013; | | COQ8A
[2] | (1) | R213W/
G272V
(CH) | no data | 2 y/o
(F) | hypotonia, seizure, ataxia,
developmental delay | blood and CSF
lactate in normal
range | no data | 350mg/day for 13 months, no response [NR] | 15 years of age | Agnès Rötig, Hôpital Necker- | Mollet et al., 2008) | | COQ8A
[3] | 1 (1) | E551K
(HOM) | ~ 8%
(muscle),
normal range
(fibroblasts) | 18 m/o
(M) | cerebella ataxia, strabismus,
muscle weakness, trunk
hypotonia, tonic seizure | blood lactate \(\), no ragged-red fibers in the muscle but mitochondrial accumulation and lipid droplets in 10%-20% of the fibers | CI+CIII↓(muscle) | 5mg/kg/day from age 3 years, 10mg/kg/day from age 4 to 7, no response; followed by 10mg/kg/day of idebenone for 7 months which worsened the patient's conditions [NR] | 16 years of age | Enfants
Malades,
France | (Mollet et al., 2008) | | COQ8A
[4] | 1 (1) | G272D/
Q605GfsX
125
(CH) | < 5%
(muscle),
normal range
(fibroblasts) | 3 y/o
(F) | exercise intolerance, muscle
weakness, cerebellar syndromes,
seizure | blood lactate \(\), mitochondrial myopathy in the muscle | CI↑, CII↑, CIII↑,
CIV↑, CS↑,
CI+CIII↓, CII+CIII↓
(muscle) | ^6 mg/kg/day (750mg/day) of CoQ ₁₀ and L-carnitine were initiated at age 5, improved exercise tolerance and fewer vomiting episodes were noted after 3 months of therapy. CoQ ₁₀ was replaced with idebenone (5mg/kg/day) at the age of 9 years, and within the following 4 months, severe exercise intolerance reappeared with numerous episodes of vomiting. Reverting to CoQ ₁₀ treatment resulted in returns to the previous clinical status within 3 months. [Obj.] | 20 years of age | Anne Lombès,
Hospitalier
Pitié-
Salpêtrière,
France | (Aure et al., 2004; Mignot et al., 2013; Mollet et al., 2008) | | COQ8A
[5] | 4 | c.1398+2T
→ C
(D420WfsX
40,
I67AfsX22)
(HOM) | no data | 11 y/o
(M) | cerebellar ataxia | no data | no data | not treated | 42 years of
age | Michel Koenig,
Hôpitaux
Universitaires | (Lagier-
Tourenne
et al.,
2008;
Quinzii et
al., 2010) | | COQ8A
[6] | (1) | c.1398+2T
→ C
(D420WfsX
40,
I67AfsX22)
(HOM) | no data | 4 y/o
(M) | cerebellar ataxia, exercise intolerance | blood lactate↑ | no data | not treated | 38 years of age | de Strasbourg,
France | (Lagier-
Tourenne
et al.,
2008) | | COQ8A
[7] | | c.1398+2T
→ C
(D420WfsX
40,
I67AfsX22)
(HOM) | normal range
(fibroblasts) | 7 y/o
(M) | Cerebellar ataxia, exercise intolerance | blood lactate↑ | CI+CIII↓
(fibroblasts) | not treated | 36 years of
age | | (Lagier-
Tourenne
et al.,
2008) | |---------------|----------|---|--|----------------|--|--|---|--|--------------------|--|---| | COQ8A
[8] | | c.1398+2T
→ C
(D420WfsX
40,
I67AfsX22)
(HOM) | no data | 8 y/o
(F) | Cerebellar ataxia, exercise intolerance | blood lactate↑ | no data | not treated | 29 years of age | | (Lagier-
Tourenne
et al.,
2008) | | COQ8A
[9] | 1 (1) | Q167LfsX
36
(HOM) | ~ 64%
(fibroblasts) | 4 y/o
(M) | cerebellar ataxia, mild mental retardation | blood lactate in
normal range | CI+CIII ↓ , CII+CIII ↓ (fibroblasts) | not treated | 18 years of
age | | (Lagier-
Tourenne
et al.,
2008;
Quinzii et
al., 2010) | | COQ8A
[10] | 1 (1) | Y514C/
T584del
(CH) | ~ 51%
(fibroblasts),
~ 46%
(muscle) | 5 y/o
(M) | cerebellar ataxia, gynecomastia,
feet and thumbs in dystonic
position | blood lactate in
normal range | CI+CIII ↓ , CII+CIII
↓ (fibroblasts) | 60 -700 mg/day over 8 years,
the patient reported mild
subjective improvement, and
stabilization of the cerebellar
ataxia was observed on
examination | 17 years of
age | | (Lagier-Tourenne et al., 2008; Lamperti et al., 2003; Quinzii et al., 2010) | | COQ8A
[11] | 1 (1) | K314_Q360
del/
G549S
(CH) | no data | 3 y/o
(F) | cerebellar ataxia, mild hearing loss | blood lactate in
normal range | no data | not treated | 30 years of age | | (Lagier-
Tourenne
et al.,
2008) | | COQ8A
[12] | | R348X
(HOM) | no data | 3 y/o
(M) | cerebellar ataxia, exercise
intolerance, myoclonus, tremor,
dystonic posture | no data | no data | no data | 31 years of age | | | | COQ8A
[13] | 3
(1) | R348X
(HOM) | no data | 9 y/o
(M) | cerebellar ataxia, cognitive
impairment, speech and
coordination difficulties, exercise
intolerance | no data | no data | no data | 26 years of age | Hubert Smeets, | (Comondo | | COQ8A
[14] | | R348X
(HOM) | no data | 3 y/o
(M) | cerebellar ataxia, epilepsy,
exercise intolerance, vision
impairment | no data | no data | no data | 25 years of age | Maastricht
University, The
Netherlands | (Gerards
et al.,
2010) | | COQ8A
[15] | 2 | R348X/
L379X
(CH) | no data | 2 y/o
(F) | ataxia, tremor, dysarthric and
monotonous speech, exercise
intolerance, slight spasticity | unremarkable
muscle
morphology | no data | no data | 26 years of age | | | | COQ8A
[16] | (1) | R348X/
L379X
(CH) | no data | infancy
(M) | cerebellar ataxia, dysarthria | unremarkable
muscle
morphology | CII+CIII↓
(muscle) | no data | 21 years of age | | | | COQ8A
[17] | 1
(1) | R348X
(HOM) | <14.5%
(muscle) | 6 y/o
(F) | seizure, ataxia, cerebellar atrophy,
a mild cognitive delay | laboratory tests,
including creatine
kinase, and | CII+CIII ↓ (muscle) | 10mg/kg/day initiated at the age of 8 years, within 6 months improvement of | 17 years of age | Enrico Bertini, | (Terraccia
no et al.,
2012) | | | | | | | | metabolic investigations, including transferrin isofocusing, serum lactate, serum and urine organic acids, were unremarkable | | ataxia was observed, but after
5 years of treatment, MRI
showed increased cerebellar
atrophy | | Bambino Gesù
Children's
Hospital, Italy | | |---------------|----------|-----------------------------------|--------------------------|------------------|--|--|--|---|-----------------|--|------------------------| | COQ8A
[18] | 2
(1) | T584delA
CC/
P502R
(CH) | no data | 2 y/o
(F) | cerebellar ataxia, dysarthria,
nystagmus, cognitive decline,
psychiatric disorder | metabolic
evaluation and
muscle
morphology were
unremarkable | CI+CIII↓,
CIV↓(muscle) | 20mg/kg/day initiated at age 5, partial improvement in motor skills, balance, and strength; after 6 years, treatment was discontinued, and the patient's condition deteriorated. [Obj.] | 20 years of age | Dorit Lev,
Wolfson
Medical Center,
Israel | (Blumkin et al., 2014) | | COQ8A
[19] | | T584delA
CC/
P502R
(CH) | no data | childhood
(F) | mild dysfluent speech and
clumsiness, cerebellar atrophy,
mild dysarthria | no data | no data | treated, dosage and response not described | 32 years of age | istaci | | | COQ8A
[20] | 1 (1) | S616LfsX
114/
R301Q
(CH) | ~ 45%
(plasma) | 9 y/o
(M) | exercise intolerance, cerebellar ataxia, tremors, dysautonomia | blood lactate↑,
the remaining
blood tests,
including liver
function and
serum creatine
kinase
were all normal | no data | 120mg/day, self-reported fatigue and exercise tolerance improved after 2 weeks of therapy. After 2 years of therapy, ataxia and head tremor diminished and SARA total score improved. When the treatment was stopped for a month, the patient's condition deteriorated, rendering him to resume taking CoQ ₁₀ . [Obj.] | 35 years of age | Dantao Peng,
China-Japan
Friendship
Hospital, China | (Zhang et al., 2020) | | COQ8A
[21] | 1
(1) | R271C/
A304T
(CH) | normal range
(muscle) | 15 y/o
(F) | cerebellar ataxia, tremors | no data | COX↓(muscle) | 300 mg/day, no response after 6 months [NR] | 46 years of age | | | | COQ8A
[22] | 1
(1) | A304V
(HOM) | ~ 8%
(muscle) | 27 y/o
(F) | cerebellar ataxia, upper-limb
myoclonus, seizure, dysmetria,
cataract | no data | CI↓, CIV↓, COX↓,
lipid↑
(muscle) | 300 mg/day, no response after 6 months [NR] | 50 years of age | Rita Horvath, | (Horvath | | COQ8A
[23] | 1
(1) | R299W
(HOM) | no data | 1 y/o
(F) | cerebellar ataxia, seizure, mental
retardation, unable to walk by 12
years | no data | no data | 200 mg/day, no response within 2 months [NR] | 18 years of age | Newcastle
University, UK | et al.,
2012) | | COQ8A
[24] | 1 (1) | Y429C/? | ~ 22%
(muscle) | 1.5-2 y/o
(F) | ataxia, muscle weakness,
cognitive
impairment, horizontal
nystagmus, bilateral dysmetria,
tremors | no data | CI↓, CIV↓,
CII+CIII↓, COX↓,
lipid↑(muscle) | 200 mg/day, no response within 2 months [NR] | 20 years of age | | | | COQ8A
[25] | 2
(1) | S616LfsX
114
(HOM) | ~ 35%
(fibroblasts) | 10 y/o
(F) | cerebellar ataxia, myoclonus,
slurred speech, wheelchair-
dependent by 30 years of age | no data | CI↓, CII+CIII↓
(fibroblasts) | 400mg/day, improvement in
myoclonic symptoms, speech
quality (after 3 months), and
ataxia with a reduction in | 35 years of age | Henry Houlden,
National
Hospital for
Neurology and | (Liu et al., 2014) | | | | | | | | | | SARA (after 6 months) [Obj.] | | Neurosurgery,
UK | | |---------------|----------|--|-----------------|----------------|--|--|--|--|-----------------|--|----------------------| | COQ8A
[26] | | S616LfsX
114
(HOM) | no data | 14 y/o
(M) | cerebellar ataxia, myoclonus, tremors, dysarthric speech | no data | no data | 200mg/day, improvement in speech and fatigue after 3 months of treatment | 32 years of age | | | | COQ8A
[27] | 1
(1) | R301W/
c.1399-3_
1408del
(CH) | low
(muscle) | 11 y/o
(M) | reduced dexterity, dysarthria,
hypometric saccades, scanning
speech, and dystonic posturing,
tremors, ataxia | no data | no data | 800mg/day, a resolution of tremors and improvement of limb and truncal dystonia after 9 months of treatment [Subj.] | 25 years of age | | | | COQ8A
[28] | 1 (1) | T584del/
T511M
(CH) | low
(muscle) | 10 y/o
(F) | ataxia, tremors, dysarthria,
appendicular dysmetria, truncal
instability, titubation, wheelchair-
dependent by 53 years of age | no data | no data | 800mg/day, improvement of ataxia overall with a reduction in SARA score, able to work independently, after 9 months of therapy. [Obj.] | 54 years of age | Renato Puppi
Munhoz,
University of
Toronto,
Canada | (Chang et al., 2018) | | COQ8A
[29] | 1 (1) | D305Y
(HOM) | low
(muscle) | 5 y/o
(M) | developmental delay, intellectual
disability, ataxia, isolated pan-
cerebellar features including head
titubation, dysmetria,
dysdiadochokinesia | no data | normal range of
activities of CI and
CII, CS and COX
(muscle) | 800mg/day, inconsistent use for 2 years, no response [NR] | 33 years of age | | | | COQ8A
[30] | 1
(1) | T445RfsX
52
(HOM) | no data | no data
(F) | ataxia, seizure, developmental delay, strabismus | no data | no data | no data | 15 years of age | | | | COQ8A
[31] | 1
(1) | T511M
(HOM) | no data | no data
(F) | ataxia, developmental delay | no data | no data | no data | 20 years of age | | | | COQ8A
[32] | 1
(1) | R348X/
2A>G [p?]
(CH) | no data | no data
(F) | ataxia, dysarthria | no data | no data | no data | 45 years of age | Miao Sun, The University | (Sam at | | COQ8A
[33] | 1
(1) | R271C/
R334W
(CH) | no data | 25 y/o
(M) | ataxia, dystonia, myoclonus, tremors, seizure | no data | no data | no data | 31 years of age | of Chicago,
USA | (Sun et al., 2019) | | COQ8A
[34] | 1
(1) | E551K/
R301W
(CH) | no data | no data
(F) | ataxia, seizure | no data | no data | no data | 33 years of age | | | | COQ8A
[35] | 1
(1) | R301W/
R410Q
(CH) | no data | no data
(F) | ataxia, developmental delay | no data | no data | no data | 8 years of age | | | | COQ8A
[36] | 1
(1) | N148X/
A338T
(CH) | no data | 12 y/o
(F) | cerebellar ataxia, tremors, focal
dystonia | blood lactate in
normal range | no data | not treated | 35 years of age | | | | COQ8A
[37] | 1
(1) | A42fs/
Q50X
(CH) | no data | no data
(F) | cerebellar ataxia, dystonic tremor | no data | no data | not treated | 38 years of age | Matthis Synofzik University of | (Traschut z et al., | | COQ8A
[38] | 1
(1) | A339T/
Y361
(CH) | no data | 42 y/o
(M) | cerebellar ataxia, stroke-like
episode, muscle weakness,
hearing loss | blood lactate in
normal range, no
ragged red fibers
in the muscle | activities in normal range | dosage not described, no response [NR] | 45 years of age | Tübingen,
Germany | 2020) | | | | 1 | | 1 | | 1 | | 1 | 1 | · · | | |---------------|----------|----------------------------------|-------------------|---------------|---|--|--------------------------------------|---|-----------------|-----|--| | COQ8A
[39] | 2 | A337T
(HOM) | no data | 6 y/o
(M) | cerebellar ataxia, dystonia, tremor, | blood lactate in
normal range | no data | 600mg/day, no response [NR] | 12 years of age | | | | COQ8A
[40] | (1) | A337T
(HOM) | no data | 2 y/o
(M) | ataxia, impairment of speech | no data | no data | not treated | 6 years of age | | | | COQ8A
[41] | 1
(1) | A338V
(HOM) | no data | 13 y/o
(F) | cerebellar ataxia, muscle
weakness, myoclonus, tremor,
dysarthria | blood lactate in
normal range | no data | dosage not described, improved tremors | 18 years of age | | | | COQ8A
[42] | 2 | V83fs
(HOM) | no data | 8 y/o
(F) | cerebellar ataxia, tremors | blood lactate † | no data | 1250mg/day, improved tremors | 37 years of age | | | | COQ8A
[43] | (1) | V83fs
(HOM) | no data | 16 y/o
(M) | cerebellar ataxia, dysarthria, tremors | blood lactate in
normal range | no data | 1250mg/day, response not described | 25 years of age | | | | COQ8A
[44] | 1
(1) | T584del/
A338T
(CH) | ~ 15%
(muscle) | 6 y/o
(F) | ataxia, pan-cerebellar atrophy | mild
mitochondrial
myopathy with
ragged red fibers
and COX- fibers
(muscle) | normal RC enzyme activities (muscle) | 100mg/day, response not described | 69 years of age | | | | COQ8A
[45] | 1 (1) | E481X
(HOM) | no data | 1 y/o
(F) | ataxia, motor retardation, cognitive impairment, tremors | blood lactate in
normal range | no data | 200mg/day, no initial
apparent effect but after stop:
fatigue and falls;
improvement of muscle
weakness with reintroduction
of CoQ ₁₀ | 16 years of age | | | | COQ8A
[46] | 1
(1) | Q167LfsX
36/
R348X
(CH) | no data | 1 y/o
(M) | ataxia | no data | no data | not treated | 17 years of age | | | | COQ8A
[47] | 1
(1) | R271C/
T487R
(CH) | no data | 6 y/o
(F) | ataxia, seizure, stroke-like
episodes | unremarkable
muscle histology | normal range
(muscle) | not treated | 26 years of age | | | | COQ8A
[48] | 1
(1) | c.589-
3C>G/
G615D
(CH) | no data | 2 y/o
(F) | ataxia, hypotonia | blood lactate in
normal range | no data | 10 mg/kg/day, improvement in stability | 9 years of age | | | | COQ8A
[49] | 1
(1) | R348X
(HOM) | no data | 25 y/o
(M) | ataxia, tremors, spasticity | no data | no data | not treated | 53 years of age | | | | COQ8A
[50] | 1
(1) | c.589-
3C>G/
R301W
(CH) | no data | 2 y/o
(F) | ataxia, seizure | no data | no data | 10 mg/kg/day, improved balance | 13 years of age | | | | COQ8A
[51] | 2 | R301W/
E446AfsX
33
(CH) | low
(muscle) | 3 y/o
(M) | ataxia | mild muscle
histology changes | mild changes
(muscle) | 10 mg/kg/day, no response [NR] | 10 years of age | | | | COQ8A
[52] | (1) | R301W/
E446AfsX
33
(CH) | no data | 2 y/o
(M) | ataxia, developmental retardation | no data | no data | 10 mg/kg/day, no response [NR] | 7 years of age | | | | COO94 | 1 | D240V | 1 | 10/- | | 1-1 | | I | 24 | l | |-------|-------|----------|----------|-----------|-------------------------------------|------------------|--------------------------|------------------------------|----------------|---| | COQ8A | 1 (1) | R348X | low | 10 y/o | epilepsy, ataxia | blood lactate in | normal range
(muscle) | 600mg/day, no response [NR] | 24 years of | | | [53] | | (HOM) | (muscle) | (F) | / | normal range | | | age | | | COQ8A | 1 | R301W | low | 8 y/o | ataxia, seizure, cardiomyopathy | blood lactate in | normal range | 400mg/day, no response [NR] | death at 17 | | | [54] | (1) | (HOM) | (muscle) | (F) | | normal range | (muscle) | | years of age | | | COQ8A | 1 | E568X | 1. | 6 y/o | | 1 . | 1. | 300mg/day since 5 years old, | 69 years of | | | [55] | (1) | (HOM) | no data | (F) | spastic hypertonia, ataxia | no data | no data | more energetic, mentally | age | | | | ` ′ | | | | | | | quicker | 46 6 | | | COQ8A | | M555I | no data | 11 y/o | ataxia, exercise intolerance, | no data | no data | not treated | 46 years of | | | [56] | 2 | (HOM) | | (F) | cognitive complaints | | | | age | | | COQ8A | (1) | M555I | no data | 1 y/o | ataxia, memory/concentration | unremarkable | no data | not treated | 40 years of | | | [57] | | (HOM) | | (F) | difficulties | muscle histology | | | age | | | COQ8A | 1 | Q167Lfs | no data | 1 y/o | developmental delay, hypomimia, | blood lactate↑ | no data | not treated | 19 years of | | | [58] | (1) | (HOM) | | (M) | learning difficulties, ataxia | ' | | | age | | | COQ8A | 1 | O207L | no data | 11 y/o | ataxia, tremors, myoclonus | no data | no data | not treated | 19 years of | | | [59] | (1) | (HOM) | |
(F) | | | | | age | | | COQ8A | 1 | H85AfsX4 | • . | 3 y/o | | blood lactate in | 1 | 400 - 1200 mg/day, response | | | | [60] | (1) | 2 | no data | (M) | ataxia | normal range | no data | not described | 9 years of age | | | | | (HOM) | | ` ' | | | | | | | | ~~~~ | _ | L275RfsX | | _ , | | | | | | | | COQ8A | 1 | 16/ | no data | 6 y/o | ataxia, choreiform dyskinesia, | blood lactate in | no data | not treated | 16 years of | | | [61] | (1) | L402P | | (F) | tremors | normal range | | | age | | | | | (CH) | | | | | | | | | | COQ8A | | C268R | no data | 6 y/o | ataxia, epilepsy | no data | no data | not treated | 23 years of | | | [62] | 2 | (HOM) | | (F) | | | | | age | | | COQ8A | (1) | C268R | no data | 2 y/o | developmental delay, epilepsy, | no data | no data | not treated | 21 years of | | | [63] | | (HOM) | | (F) | cerebellar atrophy | | | | age | | | COQ8A | 1 | M555I | no data | 1 y/o | hearing loss, tremors, cerebellar | no data | no data | not treated | 59 years of | | | [64] | (1) | (HOM) | | (M) | atrophy | | | | age | | | COQ8A | 1 | R301W/ | | 4 y/o | mental and motor retardation, | blood lactate in | | | 58 years of | | | [65] | (1) | M555I | no data | (F) | ataxia, tremors, seizure | normal range | no data | not treated | age | | | | | (CH) | | | | | | | Ü | | | COQ8A | 1 | G342W | no data | 10 y/o | ataxia, tremors | no data | no data | not treated | 78 years of | | | [66] | (1) | (HOM) | | (M) | , | | | | age | | | COQ8A | | R213G | no data | childhood | ataxia, speech and swallowing | no data | no data | not treated | 63 years of | | | [67] | 2 | (HOM) | | (M) | difficulties, leg cramps | | | | age | | | COQ8A | (1) | R213G | no data | 20 y/o | ataxia, seizure, speech and | blood lactate in | no data | not treated | 58 years of | | | [68] | | (HOM) | | (F) | swallowing difficulties | normal range | | | age | | | COQ8A | 1 | I4K/ | _ | 2 y/o | | | | | 18 years of | | | [69] | (1) | R512W | no data | (M) | mental retardation, ataxia | no data | no data | not treated | age | | | F J | (-/ | (CH) | | (/ | | | | | | | | | | L453RfsX | | | | | | | | | | COQ8A | 1 | 24/ | no data | 13 y/o | tremors, incoordination | blood lactate in | no data | not treated | 37 years of | | | [70] | (1) | E568X | | (F) | | normal range | | | age | | | | | (CH) | | | | | | 1 | | | | | | L453RfsX | | | | | | | | | | COQ8A | 1 | 24/ | no data | 22 y/o | ataxia, bipolar disorder, impulsive | no data | no data | not treated | 71 years of | | | [71] | (1) | E568X | | (F) | behavior | | | | age | | | | | (CH) | | | | | | | | | | COQ8A
[72] | 2 | T445fs
(HOM) | no data | 7 y/o
(F) | mild ataxia, mild dysarthria | no data | no data | not treated | 41 years of age | | | |---------------|----------|-------------------------------------|-------------------------------|------------------|---|----------------------------------|-----------------------|---|-------------------|---|-----------------------| | COQ8A
[73] | (1) | T445fs
(HOM) | no data | 6 y/o
(M) | mild ataxia, mild dysarthria
tremors, speech disorder | mild denervation in muscle | no data | not treated | 37 years of age | | | | COQ8A
[74] | 2 | G615D
(HOM) | no data | childhood
(M) | ataxia, dysmetria, seizure | blood lactate in
normal range | no data | 135mg/day of idebenone for
9 months, response not
described | 29 years of age | | | | COQ8A
[75] | (1) | G615D
(HOM) | no data | 7 y/o
(F) | ataxia. dysmetria | no data | no data | 135mg/day of idebenone,
response not described | 24 years of age | | | | COQ8A
[76] | 1
(1) | del exons
3-15/
F508S
(CH) | no data | 6 y/o
(M) | ataxia. dysmetria, myoclonus | no data | no data | 300mg/day for 15 months, improvement in movement disorder and SARA score [Obj.] | 17 years of age | | | | COQ8A
[77] | 1
(1) | R299W/
L453RfsX
24
(CH) | normal range
(fibroblasts) | 15 y/o
(M) | ataxia, seizure, myoclonus,
dysmetria | no data | no data | 300mg/day for 8 months, improvement disorder [Subj.] | 44 years of age | | | | COQ8A
[78] | 2 | R299W/
R410X
(CH) | no data | 4 y/o
(F) | ataxia, dysmetria, seizure | no data | no data | 300mg/day for1 month,
withdrawn, reversible side
effect of treatment (anorexia)
[NR] | 38 years of age | Mathieu
Anheim,
Hôpital de la
Salpêtrière, | (Mignot et al., 2013) | | COQ8A
[79] | (1) | R299W/
R410X
(CH) | no data | 4 y/o
(M) | ataxia, dysmetria, seizure | blood lactate in
normal range | no data | 300mg/day for1 month,
withdrawn, reversible side
effect of treatment (diarrhea)
[NR] | 34 years of age | France | | | COQ8A
[80] | 1
(1) | R271C
(HOM) | low
(plasma) | 1.5 y/o
(F) | ataxia, seizure, dystonia, chorea,
dysmetria, myoclonus, spasticity | blood lactate in
normal range | CII+CIII↓
(muscle) | 30 mg/kg/day for 3 years, no response [NR] | 5 years of age | | | | COQ8A
[81] | 2 | L197VfsX
20
(HOM) | no data | 19 y/o
(F) | ataxia. dysmetria | blood lactate in
normal range | no data | 1200mg/day for 1 year no response [NR] | 34 years of age | | | | COQ8A
[82] | (1) | L197VfsX
20
(HOM) | no data | 19 y/o
(F) | ataxia. dysmetria, seizure | blood lactate in
normal range | no data | 1200mg/day for 1 year, no response [NR] | 31 years of age | | | | COQ8A
[83] | 1
(1) | Q360_Y36
1insX
(HOM) | no data | 2 y/o
(F) | ataxia. Dysmetria, tremors | blood lactate in
normal range | no data | 800mg/day for 1 year, no response [NR] | 15 years of age | | | | COQ8A
[84] | 1
(1) | R299W
(HOM) | ~ 10-24%
(muscle) | 7 y/o
(F) | ataxia, seizure, tremor | unremarkable
muscle biopsy | no data | 900mg/day for 6 months, no response [NR] | 35 years of age | | | | COQ8A
[85] | 2 (1) | R299W/
F578V
(CH) | ~ 34-60%
(muscle) | 7 y/o
(M) | ataxia, seizure, dysmetria,
tremors, dysarthria,
dysdiadochokinesia | unremarkable
muscle biopsy | no data | 600mg/day since the age of 33, improvement in balance and coordination (reported by the patient) and a reduction of SARA score [Obj.] | 34 years of age | L. A. Bindof,
University of | (Hikmat et al., | | COQ8A
[86] | ` ` ` ` | R299W/
F578V
(CH) | no data | 3 y/o
(F) | dysarthria, ataxia, epilepsy, cognitive impairment, tremors | no data | no data | no data | died at age of 22 | Bergen, Norway | 2016) | | COQ8A
[87] | 1
(1) | R299W
(HOM) | no data | 2 y/o
(F) | ataxia, epilepsy, seizure, feeding difficulties | unremarkable
muscle biopsy | no data | 1000mg/day of
deoxyubiquinone (probably | 22 years of age | | | | | | | | | | | | ubiquinol) since age of 18, no response [NR] | | | | |---------------|----------|--|---|------------------|---|--|---|--|------------------|---|-------------------------| | COQ8A
[88] | 1
(1) | R299W/
E551K
(CH) | no data | 5 y/o
(M) | dysarthria, ataxia,
seizure, delayed growth | blood lactate in
normal range | no data | no data | 18 years of age | Mathieu | | | COQ8A
[89] | 1
(1) | A304V
(HOM) | no data | 10 y/o
(M) | mild developmental delay, ataxia | no data | no data | no data | 41 years of age | Anheim,
Hôpital de | (Mallaret et al., | | COQ8A
[90] | 1
(1) | R299W/
L453RfsX
24
(CH) | no data | 15 y/o
(M) | mild developmental delay, ataxia | no data | no data | no data | 46 years of age | Hautepierre,
France | 2016) | | COQ8A
[91] | 1 (1) | 27.6 kb
deletion
of 1q42.3
involving
exons 1
and 2
(HOM) | ~ 34%
(muscle),
normal range
(fibroblasts) | 13 y/o
(F) | ataxia, tremors, hand
bradykinesia, subtle and variable
speech dysfluency | no data | CI+CIII ↓ , CII+CIII
↓ , CS ↓ (muscle) | ^Tremor improved on trihexyphenidyl/clonazepam combination therapy before ubiquinol supplementation which was initiated at age 19 years. Ubiquinol dosage was not described. After two years of ubiquinol and high-dose vitamin B-complex treatments, tremor was stable, and the patient was able to tandem walk normally. She had marked bradykinesia though. | 25 years of age | | | | COQ8A
[92] | 1 (1) | G615D/
L197VfsX
20
(CH) | no data | 7 y/o
(F) | tremors, ataxia, dysmetria,
difficulty writing
and hand clumsiness | metabolic work-
up, including,
plasma amino
acids, plasma
acyl-carnitine
profile, urinary
organic acids,
lactate, was
normal | no data | 800mg/day initiated at the age of 8.5, clinical stabilization was reported after the treatment | 10 years of age | Jennifer
Friedman,
Rady Children's
Hospital, USA | (Galosi et al., 2019) | | COQ8A
[93] | 1 (1) | R348X
(HOM) | no data | 25 y/o
(M) | ataxia, tremors, writing difficulties | Blood creatine kinase and cholesterol ↑, the remaining blood biochemistry including urinary organic acids was normal | no data | no data | 54 years of age | | | | COQ8A
[94] | 1
(1) |
R301W/
E446AfsX
33
(CH) | no data | 3 y/o
(M) | ataxia, speech difficulties, seizure, tremors, dystonia | no data | no data | 10 mg/kg/day, initiated at age
10, but has been taken only
intermittently, response not
described | 11 years of age | | | | COQ8A
[95] | 2
(1) | L277P/
c.1506+1
G>A | low
(muscle) | childhood
(F) | ataxia, dysmetria, hypotonia | The metabolic workup, including | CII+CIII↓ (muscle) | 20 mg/kg/day, improvement
in an ataxia assessment score
at 1-year follow-up [Obj.] | 7.8 years of age | R. G. Snell, | (Jacobsen et al., 2018) | | | | (CH) | normal range
(plasma) | | | plasma
cholesterol, | | | | The University of Auckland, | | |----------------|----------|-----------------------------------|--------------------------|------------------|--|---|----------------------------|--|------------------|---|---| | COQ8A
[96] | | L277P/
c.1506+1
G>A
(CH) | normal range
(plasma) | childhood
(F) | ataxia | plasma albumin,
plasma and
urinary amino
acids, urinary
organic acids, and
CSF lactate was
normal.
Mitochondria in
the muscle were
unremarkable. | CII+CIII↓ (muscle) | 20 mg/kg/day, minimal improvement in an ataxia assessment score at 1-year follow-up [NR] | 2.2 years of age | New Zealand | | | COQ8A
[97] | 1 (1) | c.655+1G
>A/
A339T
(CH) | no data | 3 y/o
(F) | exercise intolerance, dysarthria,
seizure, stroke-like episodes,
ataxia, homonymous
hemianopsia, dysarthria | blood creatinine
kinase↑, blood
lactate↑, CI↓ and
ragged red fibers
in the muscle | no data | 400mg/day, response not described | 18 years of age | Young-Mock
Lee, University
College of
Medicine,
Korea | https://doi
.org/10.26
815/acn.2
020.0027
6 | | COQ8A
[98] | 1
(1) | R410X
(HOM) | no data | 2 y/o
(M) | ataxia, dysarthria | no data | no data | no data | 7 years of age | | | | COQ8A
[99] | 1 (1) | R277H/
R301W
(CH) | no data | 9 y/o
(M) | ataxia, dysarthria, cognition impairment | no data | no data | no data | 11 years of age | Zhi-Ying Wu, | | | COQ8A
[100] | 1
(1) | R598H/
S616fs
(CH) | no data | 14 y/o
(M) | ataxia, head and hands shaking | no data | no data | no data | 17 years of age | Zhejiang
University,
China | (Cheng et al., 2021) | | COQ8A
[101] | 1
(1) | S616fs
(HOM) | no data | 24 y/o
(M) | ataxia, head and hands shaking, dysphagia | no data | no data | no data | 26 years of age | | | | COQ8A
[102] | 1 (1) | L320fs
(HOM) | no data | 32 y/o
(F) | ataxia, dysarthria, cognition impairment | no data | no data | no data | 52 years of age | | | | COQ8A
[103] | | c.656-
1G>T
(HOM) | no data | 20 y/o
(F) | ataxia, writer's cramp | blood lactate in
normal range | no data | 60mg/day of ubiquinol,
initiated at 20 years old,
stopped after only 2 months
due to incompliance, no
response [NR] | 45 years of age | Elisabetta | | | COQ8A
[104] | 2 (1) | c.656-
1G>T
(HOM) | no data | 7 y/o
(M) | ataxia, writer's cramp | no data | no data | 60mg/day of ubiquinol,
initiated at 25 years old, due
to adverse event (frequent
headache); switched to
5mg/kg/day of CoQ ₁₀ ; no
response at 1-year follow-up
[NR] | 28 years of age | Indelicato,
University of
Innsbruck,
Austria | (Amprosi et al., 2021) | | COQ8A
[105] | 1 (1) | A339T
(HOM) | no data | 14 m/o
(F) | hypotonia, developmental delay,
ataxia, glaucoma, dysmorphic
features | serum creatine
kinase†; other
investigations,
including urinary
organic acids and
blood lactate were
unremarkable.
ragged-red fibers
in the muscle. | CII+CIII↓, CS↑
(muscle) | 100mg/day, response not described | 6 years of age | Robert W.
Taylor,
Newcastle
University, UK | (Cotta et al., 2020) | | COQ8A
[106] | 1
(1) | Q343_V34
4delinsH
M/
G244_Q28
4del
(CH) | <2%
(muscle),
normal range
(blood white
cells) | 2 y/o
(F) | speech difficulties, ataxia,
tremors, hypotonia, seizure,
hypertension, exercise intolerance | blood lactate [†] ,
blood alanine [†] ,
TCA metabolites
in urine [†] , ragged-
red fibers in the
muscle. | CII+CIII↓, CS↑
(muscle) | no data | 16 years of age | | | |----------------|----------|--|--|--------------|--|--|----------------------------|--|-----------------|--|------------------------------| | COQ8A
[107] | 2 | R301W/
E446AfsX
33
(CH) | no data | 3 y/o
(M) | ataxia, tremors, epilepsy, mild intellectual retardation | no data | no data | 15 mg/kg/day for 6 months, no improvement in motor | 10 years of age | | | | COQ8A
[108] | (1) | R301W/
E446AfsX
33
(CH) | no data | 3 y/o
(M) | ataxia, mild intellectual retardation | no data | no data | performance (Timed 25-
foot walk test, SARA) [NR] | 7 years of age | Tommaso
Schirinzi, | (Schirinzi | | COQ8A
[109] | 1
(1) | G615D/
L197VfsX
20
(CH) | no data | 6 y/o
(F) | ataxia, tremors | no data | no data | 15 mg/kg/day for 1 year,
improvement in Timed 25- | 8 years of age | Bambino Gesù
Hospital, Italy | et al.,
2019) | | COQ8A
[110] | 1 (1) | R301W/
c.589-
3C > G
(splice)
(CH) | no data | 2 y/o
(F) | epilepsy, mild intellectual retardation | no data | no data | foot walk but no significant
change in SARA, gait
analysis parameters and 6
min walking test [NR] | 13 years of age | | | | COQ8A
[111] | 1 (1) | G27C
(HOM) | no data | 2 y/o
(F) | seizure, developmental regression,
hypothyroidism, mitral
regurgitation, mitral valve
prolapse, cerebellar atrophy, and
epilepsia partialis continua | no abnormality in
hematological
and biochemical
laboratory tests | no data | treated with CoQ ₁₀ after 11 years of age, dosage unknown, no effect on seizure frequency [NR] | 11 years of age | Morteza
Heidari, Tehran
University of
Medical
Sciences, Iran | (Ashrafi
et al.,
2022) | | COQ8A
[112] | 1
(1) | L609V
(HET) | moderate
deficiency in
fibroblasts
and muscle | (F) | ataxia | no data | CII+CIII↓ (muscle) | 30mg/kg/day from 8 years old, a reduction in ICARS after years of treatment [Obj.] | 10 years of age | Rafael Artuch,
Hospital Sant
Joan de Dèu,
Spain | (Pineda et al., 2010) | # S1.9 Primary CoQ₁₀ deficiency due to mutations in the COQ8B/ADCK4 gene (OMIM *615567) [# of patients: 88] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at
onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and response ² | Age at last
reported
exam or death | Corresponding
PI | References | |-------------------------|--|----------------|--|--------------------------------------|----------|--|-------------|--|--|---------------------------------------|------------------| | COQ8B | 2 | R178W
(HOM) | ~ 11%
(EBV-
transformed
lymphoblasts) | 7 y/o | SRNS | no data | no data | no data | kidney
transplant at
age 10 | Friedhelm
Hildebrandt, | (Ashraf | | COQ8B
[2] | (1) | R178W
(HOM) | ~10%
(EBV-
transformed
lymphoblasts) | 13 y/o | SRNS | no data | no data | no data | kidney
transplant at
age 15 | Boston
Children's
Hospital, USA | et al.,
2013) | | COQ8B | 1
(1) | W34X/
T319dup | no data | 10 y/o | SRNS | no data | no data | no data | kidney
transplant at | | | |---------------|----------|--|---|----------------|---------------------|---|---------|---|-----------------------------------|--|-----------------------------| | COQ8B [4] | 2 | (CH)
F215Lfs
X14/R47
7Q
(CH) | no data | 13 y/o | SRNS | no data | no data | no data | kidney
transplant at
age 15 | | | | COQ8B | (1) | F215Lfs
X14/R47
7Q
(CH) | no data | 12 y/o | SRNS | no data | no data | no data | kidney
transplant at
age 13 | | | | COQ8B
[6] | | D286G/
E483X
(CH) | no data | 14 y/o | SRNS | no data | no data | no data | kidney
transplant at
age 18 | | | | COQ8B
[7] | 3
(1) | D286G/
E483X
(CH) | no data | 3 y/o | SRNS | no data | no data | no data | 3 years of age | | | | COQ8B
[8] | |
D286G/
E483X
(CH) | no data | 9 y/o | SRNS | no data | no data | no data | 9 years of age | | | | COQ8B
[9] | 2 | R320W
(HOM) | no data | 12 y/o | SRNS | no data | no data | no data | ESRF at age
17 | | | | COQ8B
[10] | (1) | R320W
(HOM) | no data | 20 y/o | SRNS | no data | no data | no data | ESRF at age 23 | | | | COQ8B
[11] | 2 | R343W
(HOM) | no data | 20 y/o | SRNS | no data | no data | no data | ESRF at age 20 | | | | COQ8B
[12] | (1) | R343W
(HOM) | no data | 18 y/o | SRNS | no data | no data | no data | ESRF at age
19 | | | | COQ8B
[13] | 2 | Q452Hfs
(HOM) | ~ 27%
(fibroblasts) | 16 y/o | SRNS | no data | no data | no data | 16 years of age | | | | COQ8B
[14] | (1) | Q452Hfs
(HOM) | ~ 27%
(fibroblasts) | 21 y/o | SRNS | no data | no data | no data | 21 years of age | | | | COQ8B
[15] | 1
(1) | H400Nfs
X11
(HOM) | ~ 8%
(EBV-
transformed
lymphoblasts) | < 1 y/o | SRNS | no data | no data | no data | no data | | | | COQ8B
[16] | 1
(1) | R178W
(HOM) | no data | 30 y/o
(F) | NS/FSGS | proteinuria,
hypoalbuminemia,
uPCR↑ | no data | 20 mg/kg/day, a decrease in uPCR and stabilization of eGFR [Obj.] | no data | Toshiki Doi,
Hiroshima
University
Hospital, Japan | (Maeoka
et al.,
2020) | | COQ8B
[17] | | E447Gfs
X10
(HOM) | no data | 14 y/o
(M) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 17.7 | Beata S.
Lipska- | (Atmaca et al., | | COQ8B
[18] | 5
(1) | E447Gfs
X10
(HOM) | no data | 7.3 y/o
(F) | SRNS/FSGS, epilepsy | no data | no data | no data | ESRF at the age of 12.6 | Zietkiewicz, Medical University of | 2017;
Korkmaz
et al., | | COQ8B
[19] | | E447Gfs
X10
(HOM) | no data | 17 y/o
(F) | NS | no data | no data | no data | ESRF at the age of 18 | Gdansk, Poland | 2016) | | COQ8B
[20] | | E447Gfs
X10
(HOM) | no data | 27 y/o
(F) | NS | no data | no data | no data | ESRF at the age of 31 | | |---------------|----------|-------------------------|---------|-----------------|--|---------|---------|--|---|--| | COQ8B
[21] | | E447Gfs
X10
(HOM) | no data | 7 y/o
(F) | NS | no data | no data | no data | 7 years of age | | | COQ8B
[22] | | E447Gfs
X10
(HOM) | no data | 25.7 y/o
(F) | SRNS/FSGS | no data | no data | 20-30mg/kg/day for 3
months, response not
described | 37 years of age,
ESRF at the age of 35.4 | | | COQ8B
[23] | 4
(1) | E447Gfs
X10
(HOM) | no data | 16.7 y/o
(M) | NS | no data | no data | not treated | 25.3 years of age,
ESRF at the age of 16.7 | | | COQ8B
[24] | | E447Gfs
X10
(HOM) | no data | 13.5 y/o
(M) | SRNS/FSGS | no data | no data | not treated | 22.3 years of age,
ESRF at the age of 16.6 | | | COQ8B
[25] | | not tested | no data | 22 y/o
(M) | NS | no data | no data | no data | ESRF at the age of 22 | | | COQ8B
[26] | 2 | L98R
(HOM) | no data | 5.9 y/o
(F) | NS/FSGS, primary
nocturnal enuresis | no data | no data | no data | 5.9 years of age | | | COQ8B
[27] | (1) | L98R
(HOM) | no data | 13.3 y/o
(M) | NS/FSGS, primary
nocturnal enuresis | no data | no data | no data | ESRF at the age of 14 | | | COQ8B
[28] | 2 | R178W
(HOM) | no data | 14.3 y/o
(M) | NS/FSGS, hypermetropia, astigmatism | no data | no data | no data | ESRF at the age of 14.3 | | | COQ8B
[29] | (1) | R178W
(HOM) | no data | 9.8 y/o
(M) | NS/FSGS, hypermetropia, astigmatism | no data | no data | no data | ESRF at the age of 9.8 | | | COQ8B
[30] | 2 | L98R
(HOM) | no data | 13.5 y/o
(F) | NS/FSGS, lupus-like symptoms | no data | no data | 20-30mg/kg/day for 22
months, response not
described | 20.3 years of age | | | COQ8B
[31] | (1) | L98R
(HOM) | no data | 27 y/o
(F) | NS/FSGS | no data | no data | 20-30mg/kg/day, response
not described | 30 years of age | | | COQ8B
[32] | | E447Gfs
X10
(HOM) | no data | 14.9 y/o
(M) | NS | no data | no data | no data | ESRF at the age of 14.9 | | | COQ8B
[33] | 4 | E447Gfs
X10
(HOM) | no data | 13.2 y/o
(F) | NS, epilepsy | no data | no data | no data | ESRF at the age of 13.2 | | | COQ8B
[34] | (1) | E447Gfs
X10
(HOM) | no data | 18 y/o
(M) | NS | no data | no data | no data | ESRF at the age of 18 | | | COQ8B
[35] | | E447Gfs
X10
(HOM) | no data | 9 y/o
(M) | NS | no data | no data | treated, dosage and response not described | 9 years of age | | | COQ8B
[36] | 2 | D250N
(HOM) | no data | 16.9 y/o
(M) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 17.4 | | | COQ8B
[37] | (1) | D250N
(HOM) | no data | 13.4 y/o
(F) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 13.7 | | | | | | | | I | • | | 1 | 1 | | | |---------------|----------|-------------------------|---------|-----------------|---|---------|---------|-------------|--|--|---------------| | COQ8B
[38] | 1
(1) | F215Lfs
X14
(HOM) | no data | 15.1 y/o
(M) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 15.8 | | | | COQ8B
[39] | 1
(1) | H400Nfs
X11
(HOM) | no data | 10.8 y/o
(M) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 15.9 | | | | COQ8B
[40] | 1
(1) | P310L/
A498E
(CH) | no data | 5.1 y/o
(F) | NS/FSGS, seizure | no data | no data | no data | ESRF at the age of 13.6 | | | | COQ8B
[41] | 1
(1) | F215Lfs
X14
(HOM) | no data | 14.2 y/o
(M) | NS/FSGS, retinitis pigmentosa,
hypospadias | no data | no data | no data | ESRF at the age of 13.6 | | | | COQ8B
[42] | 1
(1) | E447Gfs
X10
(HOM) | no data | 17.6 y/o
(M) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 18 | | | | COQ8B
[43] | 1
(1) | E81X/
R490C
CH) | no data | 11 y/o
(M) | steroid-resistant nephrotic-level proteinuria | no data | no data | no data | normal renal
function at
age of 12 | | | | COQ8B
[44] | 1
(1) | R150X/
D250H
(CH) | no data | 8 y/o
(F) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 11.7 | | | | COQ8B
[45] | 1
(1) | R178W/
D250H
(CH) | no data | 9 y/o
(F) | SRNS | no data | no data | no data | ESRF at the age of 11 | F: 11.1 | | | COQ8B
[46] | 1
(1) | S246N
(CH) | no data | 8 y/o
(F) | SRNS/FSGS | no data | no data | no data | normal renal
function at
age of 9 | Friedhelm
Hildebrandt,
Boston | (Wang et al., | | COQ8B
[47] | 1
(1) | S246N
(CH) | no data | 17 y/o
(F) | isolated proteinuria | no data | no data | no data | normal renal
function at
age of 18 | Children's
Hospital, USA | 2017a) | | COQ8B
[48] | 1 (1) | D250H
(HOM) | no data | 10 days
(F) | NS | no data | no data | no data | no data | | | | COQ8B
[49] | 1 (1) | D250H
(HOM) | no data | 1 y/o
(F) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 6 | | | | COQ8B
[50] | 1 (1) | D250H/
Q365E
(CH) | no data | 6 y/o
(F) | proteinuria/FSGS | no data | no data | no data | normal renal
function at
age of 12 | | | | COQ8B
[51] | 2 | P150Q/
N253K
(CH) | no data | 8 y/o
(F) | SRNS/FSGS | no data | no data | not treated | ESRF at the age of 15 | Han II Chann | | | COQ8B
[52] | (1) | P150Q/
N253K
(CH) | no data | 5 y/o
(M) | SRNS | no data | no data | not treated | ESRF at the age of 10 | Hae Il Cheong,
Seoul National
University
Children's | (Park et al., | | COQ8B
[53] | 1
(1) | S246N/
N253K
(CH) | no data | 10 y/o
(F) | SRNS/FSGS | no data | no data | not treated | ESRF at the age of 13 | Hospital, South
Korea | 2017b) | | COQ8B
[54] | 1
(1) | S246N
(HOM) | no data | 10 y/o
(F) | SRNS/FSGS | no data | no data | not treated | ESRF at the age of 12 | | | | | | | | 1 | 1 | 1 | 1 | | | 1 | | |---------------|----------|-------------------------|---------|-----------------|--------------------------------|---------|---------|---|------------------------------|--|----------------------| | COQ8B
[55] | 1
(1) | S246N/
R490C
(CH) | no data | 6 y/o
(F) | SRNS/FSGS | no data | no data | not treated | ESRF at the age of 10 | | | | COQ8B
[56] | 1 (1) | S246N
(HOM) | no data | 12 y/o
(F) | NS | no data | no data | complete remission of proteinuria with cyclosporine treatment; after diagnosis of primary CoQ deficiency, started on CoQ ₁₀ (30mg/kg/day) with simultaneously tapering doses of steroid and cyclosporine, response not described | 13.5 years of age | | | | COQ8B
[57] | 1
(1) | D209H/
C306X
(CH) | no data | 14 y/o
(M) | NS/FSGS | no data | no data | 150mg/day, a very limited reduction in the severity of urine protein/creatine ratio after 3 months of treatment [NR] | no data | Zhangxue Hu,
West China
Hospital, China | (Yang et al., 2018) | | COQ8B
[58] | 1 (1) | D250Y/
A217T
(CH) | no data | 5 y/o
(M) | SRNS/FSGS | no data | no data | no data | ESRF at the age of 10 | Benedetta
Chiodini,
Université Libre
de Bruxelles,
Belgium | (Lolin et al., 2017) | | COQ8B
[59] | | H400Qfs
X11
(HOM) | no data | 18 y/o
(M) | non-nephrotic proteinuria, CKD | no data | no data | not treated | died at the age of 29 | | | | COQ8B
[60] | | H400Qfs
X11
(HOM) | no data | 12 y/o
(M) | NS, CKD, seizure | no data | no data |
20-30mg/kg/day for 13
months, response not
described | 13.5 years of age | | | | COQ8B
[61] | 4 (1) | H400Qfs
X11
(HOM) | no data | 2 y/o
(F) | NS | no data | no data | 20-30mg/kg/day for 10
months, a decrease of
proteinuria but no change of
eGFR | 4.5 years of age | | | | COQ8B
[62] | | H400Qfs
X11
(HOM) | no data | 7 y/o
(M) | non-nephrotic proteinuria | no data | no data | 20-30mg/kg/day for 10
months, a decrease of
proteinuria but no change of
eGFR | 8.5 years of age | Fatih Ozaltin,
Hacettepe
University, | (Atmaca et al., | | COQ8B
[63] | 2 | H400Qfs
X11
(HOM) | no data | 13 y/o
(F) | non-nephrotic proteinuria, CKD | no data | no data | 20-30mg/kg/day for 17
months, response not
described | 22.4 years of age | Turkey | 2017) | | COQ8B
[64] | (1) | H400Qfs
X11
(HOM) | no data | 5 y/o
(M) | nephrotic syndrome, CKD | no data | no data | 20-30mg/kg/day for 17
months, response not
described | 16.5 years of age | | | | COQ8B
[65] | 1
(1) | E447Gfs
X11
(HOM) | no data | 12 y/o
(F) | NS | no data | no data | not treated | died at 14.8
years of age | | | | COQ8B
[66] | 5
(1) | H400Qfs
X11
(HOM) | no data | 17.7 y/o
(F) | NS | no data | no data | not treated | died at 21.1
years of age | | | | COQ8B
[67] | | H400Qfs
X11
(HOM) | no data | 4.2 y/o
(M) | non-nephrotic proteinuria | no data | no data | 20-30mg/kg/day for 12
months, response not
described | 18.3 years of age | | |---------------|----------|-------------------------|---------|-----------------|---|---------|---------|--|-------------------|--| | COQ8B
[68] | | H400Qfs
X11
(HOM) | no data | 22.6 y/o
(F) | NS, CKD | no data | no data | not treated | 26 years of age | | | COQ8B
[69] | | H400Qfs
X11
(HOM) | no data | 7.7 y/o
(F) | NS | no data | no data | 20-30mg/kg/day for 14
months, response not
described | 11 years of age | | | COQ8B
[70] | | H400Qfs
X11
(HOM) | no data | 23.7 y/o
(F) | non-nephrotic proteinuria | no data | no data | 20-30mg/kg/day for 10
months, a decrease of
proteinuria but no change of
eGFR | 24.6 years of age | | | COQ8B
[71] | | E447Gfs
X11
(HOM) | no data | 12,4 y/o
(F) | protéinurie, ESRF,
cardiomyopathy | no data | no data | 20-30mg/kg/day for 15
months, response not
described | 15.5 years of age | | | COQ8B
[72] | 3
(1) | E447Gfs
X11
(HOM) | no data | 9.6 y/o
(F) | NS, CKD | no data | no data | 20-30mg/kg/day for 22
months, response not
described | 12.8 years of age | | | COQ8B
[73] | | E447Gfs
X11
(HOM) | no data | 20.3 y/o
(F) | non-nephrotic proteinuria, ESKD | no data | no data | 20-30mg/kg/day for 10
months, response not
described | 25.3 years of age | | | COQ8B
[74] | 1
(1) | R477Q
(HOM) | no data | 17.8 y/o
(F) | CKD, autism, hypothy/ooidism, intellectual impairment | no data | no data | 20-30mg/kg/day for 11
months, no response [NR] | 20.3 years of age | | | COQ8B
[75] | 1
(1) | K98R
(HOM) | no data | 9 y/o
(F) | non-nephrotic proteinuria | no data | no data | 20-30mg/kg/day for 21
months, a decrease of
proteinuria but no change in
eGFR | 18.5 years of age | | | COQ8B
[76] | | E447Gfs
X10
(HOM) | no data | 16.4 y/o
(F) | NS, CKD | no data | no data | 20-30mg/kg/day for 17
months, response not
described | 18 years of age | | | COQ8B
[77] | 3
(1) | E447Gfs
X10
(HOM) | no data | 6.4 y/o
(M) | CKD, seizure | no data | no data | 20-30mg/kg/day for 16
months, response not
described | 26.5 years of age | | | COQ8B
[78] | | E447Gfs
X10
(HOM) | no data | 24 y/o
(M) | non-nephrotic proteinuria | no data | no data | 20-30mg/kg/day for 13
months, a decrease of
proteinuria but no change of
eGFR | 25.3 years of age | | | COQ8B
[79] | | K98R
(HOM) | no data | 9 y/o
(M) | NS | no data | no data | 20-30mg/kg/day for 12
months, response not
described | 16.3 years of age | | | COQ8B
[80] | 3
(1) | K98R
(HOM) | no data | 9.6 y/o
(M) | non-nephrotic proteinuria, ESKF, pulmonary hypertension | no data | no data | 20-30mg/kg/day for 12
months, response not
described | 11 years of age | | | COQ8B
[81] | | K98R
(HOM) | no data | 32.2 y/o
(M) | CKD, pulmonary hypertension | no data | no data | 20-30mg/kg/day for 13
months, a decrease of
proteinuria but an increase of
eGFR | 39 years of age | | | COQ8B
[82] | 1
(1) | D250H/
R178W
(CH) | no data | 9 m/o
(F) | proteinuria | no data | no data | 15 to 30mg/kg/day, a reduction of urine protein at 1-year follow-up [Obj.] | no data | Jianhua Mao. | | |---------------|----------|--|---------|--------------------|---|---|---------|--|--|---|---------------------------------| | COQ8B
[83] | 1
(1) | D209H/
S205N
(CH) | no data | 11 y/o
(F) | NS/FSGS, proteinuria | no data | no data | 15 to 30mg/kg/day, no response (proteinuria was persistent, and serum creatine and urea nitrogen were increased at 1-year follow up) [NR] | no data | The Second Hospital of Jiaxing, China | (Feng et al., 2017) | | COQ8B
[84] | 2
(1) | COQ8B
(D250H,
HOM)
NPHS1
(E447K,
HOM) | no data | 9 y/o
(F) | SRNS/FSGS, dyspnea, weakness, cardiac dysfunction | anemia,
proteinuria, blood
BUN and
creatinine†, hypo-
albuminemia | no data | Dosage is not described, given with metoprolol tartrate, losartan potassium, and peritoneal dialysis. At a 2-years followup, renal dysfunction was persistent but remained stable, while heart function showed no improvement. | 11 years of age | Huijie Xiao,
Peking
University, | (Zhang et al., 2017) | | COQ8B
[85] | | COQ8B
(D250H,
HOM)
NPHS1
(E447K,
HOM) | no data | 2 y/o
(M) | SRNS/FSGS | proteinuria, blood
BUN↑, hypo-
albuminemia | no data | After the genetic diagnosis, prednisone and tacrolimus were withdrawn and CoQ ₁₀ treatment started. Renal function showed a slight increase at 2-years follow-up [NR] | 2.6 years of age | China | | | COQ8B
[86] | 1 (1) | R91C/
S246N
(HOM) | no data | 3 y/o
(M) | Isolated (non-nephrotic)
proteinuria | proteinuria,
normal eGFR | no data | 15 mg/kg/day, a decrease of proteinuria within 4-months follow-up [Obj.] | no data | Li Zhang,
The First
Hospital of Jilin
University,
China | (Zhai et al., 2020) | | COQ8B
[87] | 1
(1) | I346S/
W520X
(CH) | no data | 5 y/o
(F) | FSGS, proteinuria, rhabdomyolysis | uPCR↑ | no data | 2100/day since the age of 18 years, developed ESRD a year later [NR] | ESRD at 19
years of age | Asmaa S.
AbuMaziad,
University of
Arizona, USA | (AbuMaz
iad et al.,
2021) | | COQ8B
[88] | 1 (1) | D250N
(HOM) | no data | adolescence
(F) | nephropathy, kidney failure | serum creatinine↑ | no data | not treated | kidney
transplant at
the age of 23 | Mohd Fareed,
CSIR Indian
Institute of
Integrative
Medicine, India | (Fareed et al., 2021) | #### S.1.10 Primary CoQ₁₀ deficiency-5 (COQ10D5; 614654) due to mutations in the *COQ9* gene [# of patients: 3] | Gene
[Patient
ID] | # of
patients
(# of
families) | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at
onset
(sex) if
known | Symptoms | Biochemical tests
and muscle
pathology | RCC enzymes | CoQ ₁₀ dose and responses ² | Age at last
reported
exam or death | Corresponding
PI | References | |-------------------------|--|---------------------------|--|--------------------------------------|--|---|---------------------|--|--|--|--| | COQ9
[1] | 1 (1) | R244X
(HOM) | ~ 15%
(muscle)
~ 18%
(fibroblasts) | neonatal
(M) | renal tubulopathy, ventricular
hypertrophy, seizure, cerebellar
atrophy, development delay | blood lactate
level↑, type IIB
fiber atrophy and
lipid accumulation
in the muscle | CII+CIII↓ (muscle) | initiated at 11.5 months of age at the dose of 60mg/day and increasing to 300mg/day (after 6 days) which was continued until the patient's death, no response [NR] | died at the age of 2 years | Shamima
Rahman,
Great Ormond
Street Hospital,
UK | (Duncan et al., 2009; Quinzii and Hirano, 2010; Quinzii et al., 2010; Rahman et al., 2001) | | COQ9
[2] | 1 (1) | S127_R2
02del
(HOM) | ~ 11%
(fibroblasts) | neonatal
(M) | hypotonia, bradycardia,
encephalopathy | blood lactate
level↑, blood
alanine↑ | CII+CIII↓
(skin) | not treated | died at 18
days of life | H Prokisch,
TUM, Germany | (Danhaus
er et al.,
2016) | | COQ9
[3] | 1 (1) |
G129Vfs
X17
(HOM) | no data | 4 m/o
(F) | seizure, hypotonia, dysmorphic
features,
growth retardation, microcephaly | no data | no data | initiated at 10 months of age
at the dose of 5mg/kg/day
and increasing to
50mg/kg/day after the
genetic diagnosis, no
response [NR] | 9 months of age | Asburce Olgac,
University of
Health
Sciences,
Turkey | (Olgac et al., 2020) | y/o: years old; m/o: months old; HOM: homozygous; HET: heterozygous; CH: compound heterozygous; CSF: cerebrospinal fluid; RCC: respiratory chain complex; CI: complex II; CIII: complex III; CS: citrate synthase; COX: cytochrome c oxidase; CKD: chronic kidney disease; ICARS: The International Cooperative Ataxia Rating Scale; ETC: electron transport chain; NS: nephrotic syndrome; FSGS: focal segmental glomerulosclerosis; eGFR: estimated Glomerular Filtration Rate; ESRF: end-stage renal failure; ERG: electroretinography; SDH: succinate dehydrogenase; SRNS: steroid-resistant nephrotic syndrome; SND: sensorineural deafness; SARA: Scale for the Assessment and Rating of Ataxia; uPCR: urine protein creation ratio; del: deletion; fs: frameshift; dup: duplication; ins: insertion; delins: deletion-insertion. ¹ CoQ levels are shown as reported or as a percentage relative to the mean value of reported normal range; [Obj.]: counted as patients with an objective description of the response to CoQ_{10} treatment in **Table 2**, that is where quantitative or semi-quantitative measures were used to describe CoQ_{10} treatment effects; [Subj.]: counted as patients with a subjective description of the response to CoQ_{10} treatment in **Table 2**; [NR]: counted as non-responders counte Table S2 Cases excluded from the final analysis and reasons for their exclusion. | Gene
[Patient ID*] | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at onset (sex) if known | Symptoms | CoQ ₁₀ dose and responses | Reason for exclusion | Reference | |-----------------------|---------------------------|--|-----------------------------|--|---|--|---| | COQ2
[1] | R197H/
N228S
(CH) | ~ 36%
(fibroblasts)
<3%
(kidney,
muscle) | 18 m/o
(M) | SRNS | 30mg/kg/day since age 21 months, response not described | lack of information | (Diomedi-Camassei
et al., 2007; Quinzii
et al., 2010) | | COQ2
[19] | G390A
(HOM) | no data | 18 y/o
(F) | SRNS/FSGS | treated, response not described | lack of information | (Gigante et al., | | COQ2
[20] | G390A
(HOM) | no data | 16 y/o
(F) | SRNS/FSGS | treated, response not described | lack of information | 2017) | | COQ4
[6] | P64S
(HOM) | ~ 63%
(muscle) | 10 m/o
(M) | motor deterioration, ataxia, epileptic seizures, swallowing impairment, progressive scoliosis, cognitive deterioration | treated, response not described | lack of information | (Brea-Calvo et al., 2015) | | COQ4
[31] | G124S
(HOM) | low
(fibroblasts) | 2 m/o
(M) | encephalopathy, spasms, seizure, development delay | beginning at 7 years of age, dose not described, response not described | lack of information | (Yu et al., 2019) | | COQ6
[7] | G255R
(HOM) | no data | 0.2 y/o | SRNS, SND, bilateral nephrolithiasis | 30mg/kg/day beginning at 2 months of age (together with enalapril), a decrease of proteinuria, SND and severe growth retardation were noted at 10 months of age | co-treatment with other medication, thus impossible to judge CoQ ₁₀ treatment effectiveness | (Heeringa et al., 2011) | | COQ6
[18] | P261L
(HOM) | no data | 0.8 y/o
(M) | SRNS | treated, response not described | lack of information | (Gigante et al., 2017) | | COQ6
[25] | A353D
(HOM) | no data | 5 y/o
(M) | SRNS, SND, optic atrophy | 15mg/kg/day of idebenone beginning at age of 17 years after the onset of optical symptoms, an improvement in the visual acuity after 2 months of treatment. After 13 months of treatment, the optical examination was stable, but the patient did not recover normal vision, still exhibiting persistent optic atrophy. After 3 years of treatment, minimal optic atrophy was reported. No change of the deafness status since treatment initiation. [other medications: immunosuppressive treatment] | insufficient
information for
judging treatment
efficiency | (Justine Perrin et al., 2020) | | COQ6
[26] | A353D
(HOM) | no data | 4 y/o
(M) | SRNS, SND | 10mg/kg/day of idebenone since age 7, after 13 months of treatment, hearing loss was not changed and renal involvement remained stable with only Enalapril, demonstrated by negative proteinuria. | insufficient
information for
judging treatment
efficiency | (Justine Perrin et al., 2020) | | COQ8A
[10] | Y514C/
T584del
(CH) | ~ 51%
(fibroblasts),
~ 46%
(muscle) | 5 y/o
(M) | cerebellar ataxia, gynecomastia, feet and thumbs in dystonic position | 60 -700 mg/day over 8 years, the patient
reported mild subjective improvement, and
stabilization of the cerebellar ataxia was
observed on examination | insufficient
information for
judging treatment
efficiency | (Lagier-Tourenne et al., 2008; Lamperti et al., 2003; Quinzii et al., 2010) | | COQ8A
[17] | R348X
(HOM) | <14.5%
(muscle) | 6 y/o
(F) | seizure, ataxia, cerebellar atrophy, a mild cognitive delay | 10mg/kg/day initiated at the age of 8 years, within 6 months improvement of ataxia was observed, but after 5 years of treatment, MRI showed increased cerebellar atrophy | insufficient
information for
judging treatment
efficiency | (Terracciano et al., 2012) | |---------------|----------------------------------|--------------------|------------------|---|--|--|----------------------------| | COQ8A
[19] | T584delAC
C/
P502R
(CH) | no data | childhood
(F) | mild dysfluent speech and clumsiness, cerebellar atrophy, mild dysarthria | treated, dosage and response not described | lack of information | (Blumkin et al., 2014) | | COQ8A
[26] | S616LfsX1
14
(HOM) | no data | 14 y/o
(M) | cerebellar ataxia, myoclonus, tremors, dysarthric speech | 200mg/day, improvement in speech and fatigue after 3 months of treatment | insufficient
information for
judging treatment
efficiency | (Liu et al., 2014) | | COQ8A
[41] | A338V
(HOM) | no data | 13 y/o
(F) | cerebellar ataxia, muscle weakness, myoclonus, tremor, dysarthria | dosage not described, improved tremors | insufficient
information for
judging treatment
efficiency | (Traschutz et al., 2020) | | COQ8A
[42] | V83fs
(HOM) | no data | 8 y/o
(F) | cerebellar ataxia, tremors | 1250mg/day, improved tremors | insufficient
information for
judging treatment
efficiency | (Traschutz et al., 2020) | | COQ8A
[43] | V83fs
(HOM) | no data | 16 y/o
(M) | cerebellar ataxia, dysarthria, tremors | 1250mg/day, response not described | lack of information | (Traschutz et al., 2020) | | COQ8A
[44] | T584del/
A338T
(CH) | ~ 15%
(muscle) | 6 y/o
(F) | ataxia, pan-cerebellar atrophy | 100mg/day, response not described | lack of information | (Traschutz et al., 2020) | | COQ8A
[45] | E481X
(HOM) | no data | 1 y/o
(F) | ataxia, motor retardation, cognitive impairment, tremors | 200mg/day, no initial apparent effect but after stop: fatigue and falls; improvement of muscle weakness with reintroduction of CoQ ₁₀ | insufficient
information for
judging treatment
efficiency | (Traschutz et al., 2020) | | COQ8A
[48] | c.589-
3C>G/
G615D
(CH) | no data | 2 y/o
(F) | ataxia, hypotonia | 10 mg/kg/day, improvement in stability | insufficient information for judging treatment efficiency | (Traschutz et al., 2020) | | COQ8A
[50] | c.589-
3C>G/
R301W
(CH) | no data | 2 y/o
(F) | ataxia, seizure | 10 mg/kg/day, improved balance | insufficient
information for
judging treatment
efficiency | (Traschutz et al., 2020) | | COQ8A
[55] | E568X
(HOM) | no data | 6 y/o
(F) | spastic hypertonia, ataxia | 300mg/day since 5 years old, more energetic, mentally quicker | insufficient
information for
judging treatment
efficiency | (Traschutz et al., 2020) | | COQ8A
[60] | H85AfsX4
2
(HOM) | no data | 3 y/o
(M) | ataxia | 400 - 1200 mg/day, response not described | lack of information | (Traschutz et al., 2020) | | COQ8A
[74] | G615D
(HOM) | no data | childhood
(M) | ataxia, dysmetria, seizure | 135mg/day of idebenone for 9 months, response not described | lack of information | (Mignot et al., 2013) | | COQ8A
[75] | G615D
(HOM) | no data | 7 y/o
(F) | ataxia. dysmetria | 135mg/day of idebenone, response not described | lack of information | (Mignot et al., 2013) | | | | | | 1 | | | | |----------------|--
---|-----------------|---|---|--|---| | COQ8A
[91] | 27.6 kb
deletion
of 1q42.3
involving
exons 1
and 2
(HOM) | ~ 34%
(muscle),
normal range
(fibroblasts) | 13 y/o
(F) | ataxia, tremors, hand bradykinesia, subtle and variable speech dysfluency | Tremor improved on trihexyphenidyl/clonazepam combination therapy before ubiquinol supplementation which was initiated at age 19 years. Ubiquinol dosage was not described. After two years of ubiquinol and high-dose vitamin B-complex treatments, tremor was stable, and the patient was able to tandem walk normally. She had marked bradykinesia though. | insufficient
information for
judging treatment
efficiency | (Galosi et al., 2019) | | COQ8A
[92] | G615D/
L197VfsX
20
(CH) | no data | 7 y/o
(F) | tremors, ataxia, dysmetria, difficulty writing and hand clumsiness | 800mg/day initiated at the age of 8.5, clinical stabilization was reported after the treatment | insufficient
information for
judging treatment
efficiency | (Galosi et al., 2019) | | COQ8A
[94] | R301W/
E446AfsX
33
(CH) | no data | 3 y/o
(M) | ataxia, speech difficulties, seizure, tremors, dystonia | 10 mg/kg/day, initiated at age 10, but has been taken only intermittently, response not described | lack of information | (Galosi et al., 2019) | | COQ8A
[97] | c.655+1G
>A/
A339T
(CH) | no data | 3 y/o
(F) | exercise intolerance, dysarthria, seizure, stroke-like episodes, ataxia, homonymous hemianopsia, dysarthria | 400mg/day, response not described | lack of information | https://doi.org/10.2
6815/acn.2020.002
76 | | COQ8A
[105] | A339T
(HOM) | no data | 14 m/o
(F) | hypotonia, developmental delay, ataxia, glaucoma, dysmorphic features | 100mg/day, response not described | lack of information | (Cotta et al., 2020) | | COQ8B
[22] | E447GfsX
10
(HOM) | no data | 25.7 y/o
(F) | SRNS/FSGS | 20-30mg/kg/day for 3 months, response not described | lack of information | (Atmaca et al.,
2017; Korkmaz et
al., 2016) | | COQ8B
[30] | L98R
(HOM) | no data | 13.5 y/o
(F) | NS/FSGS, lupus-like symptoms | 20-30mg/kg/day for 22 months, response not described | lack of information | (Atmaca et al., 2017; Korkmaz et al., 2016) | | COQ8B
[31] | L98R
(HOM) | no data | 27 y/o
(F) | NS/FSGS | 20-30mg/kg/day, response not described | lack of information | (Atmaca et al.,
2017; Korkmaz et
al., 2016) | | COQ8B
[35] | E447GfsX
10
(HOM) | no data | 9 y/o
(M) | NS | treated, dosage and response not described | lack of information | (Atmaca et al.,
2017; Korkmaz et
al., 2016) | | COQ8B
[56] | S246N
(HOM) | no data | 12 y/o
(F) | NS | complete remission of proteinuria with cyclosporine treatment; after diagnosis of primary CoQ deficiency, started on CoQ ₁₀ (30mg/kg/day) with simultaneously tapering doses of steroid and cyclosporine, response not described | lack of information | (Park et al., 2017b) | | COQ8B
[60] | H400QfsX
11
(HOM) | no data | 12 y/o
(M) | NS, CKD, seizure | 20-30mg/kg/day for 13 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[61] | H400QfsX
11
(HOM) | no data | 2 y/o
(F) | NS | 20-30mg/kg/day for 10 months, a decrease of proteinuria but no change of eGFR | | (Atmaca et al., 2017) | | googn | H400QfsX | | | | | | | |---------------|-----------------------------------|---------|-----------------|---|---|--|-----------------------| | COQ8B
[62] | 11
(HOM) | no data | 7 y/o
(M) | non-nephrotic proteinuria | 20-30mg/kg/day for 10 months, a decrease of proteinuria but no change of eGFR | | (Atmaca et al., 2017) | | COQ8B
[63] | H400QfsX
11
(HOM) | no data | 13 y/o
(F) | non-nephrotic proteinuria, CKD | 20-30mg/kg/day for 17 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[64] | H400QfsX
11
(HOM) | no data | 5 y/o
(M) | nephrotic syndrome, CKD | 20-30mg/kg/day for 17 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[67] | H400QfsX
11
(HOM) | no data | 4.2 y/o
(M) | non-nephrotic proteinuria | 20-30mg/kg/day for 12 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[69] | H400QfsX
11
(HOM) | no data | 7.7 y/o
(F) | NS | 20-30mg/kg/day for 14 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[70] | H400QfsX
11
(HOM) | no data | 23.7 y/o
(F) | non-nephrotic proteinuria | 20-30mg/kg/day for 10 months, a decrease of proteinuria but no change of eGFR | | (Atmaca et al., 2017) | | COQ8B
[71] | E447GfsX
11
(HOM) | no data | 12,4 y/o
(F) | proteinuria, ESRF, cardiomyopathy | 20-30mg/kg/day for 15 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[72] | E447GfsX
11
(HOM) | no data | 9.6 y/o
(F) | NS, CKD | 20-30mg/kg/day for 22 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[73] | E447GfsX
11
(HOM) | no data | 20.3 y/o
(F) | non-nephrotic proteinuria, ESKD | 20-30mg/kg/day for 10 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[75] | K98R
(HOM) | no data | 9 y/o
(F) | non-nephrotic proteinuria | 20-30mg/kg/day for 21 months, a decrease of proteinuria but no change in eGFR | | (Atmaca et al., 2017) | | COQ8B
[76] | E447GfsX
10
(HOM) | no data | 16.4 y/o
(F) | NS, CKD | 20-30mg/kg/day for 17 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[77] | E447GfsX
10
(HOM) | no data | 6.4 y/o
(M) | CKD, seizure | 20-30mg/kg/day for 16 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[78] | E447GfsX
10
(HOM) | no data | 24 y/o
(M) | non-nephrotic proteinuria | 20-30mg/kg/day for 13 months, a decrease of proteinuria but no change of eGFR | | (Atmaca et al., 2017) | | COQ8B
[79] | K98R
(HOM) | no data | 9 y/o
(M) | NS | 20-30mg/kg/day for 12 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[80] | K98R
(HOM) | no data | 9.6 y/o
(M) | non-nephrotic proteinuria, ESKF, pulmonary hypertension | 20-30mg/kg/day for 12 months, response not described | lack of information | (Atmaca et al., 2017) | | COQ8B
[81] | K98R
(HOM) | no data | 32.2 y/o
(M) | CKD, pulmonary hypertension | 20-30mg/kg/day for 13 months, a decrease of proteinuria but an increase of eGFR | not possible to judge
treatment efficiency | (Atmaca et al., 2017) | | COQ8B
[84] | COQ8B
(D250H,
HOM)
NPHS1 | no data | 9 y/o
(F) | SRNS/FSGS, dyspnea, weakness, cardiac dysfunction | dosage is not described, given with
metoprolol tartrate, losartan
potassium, and peritoneal dialysis. At a 2-
years follow-up, renal dysfunction was | insufficient
information for
judging treatment
efficiency | (Zhang et al., 2017) | | ı | (E447K, | persistent but remained stable, while heart | |---|---------|---| | | HOM) | function showed no improvement. | ^{*}Patient IDs are the same as in **Table S1**. ¹CoQ levels are shown as reported or as a percentage relative to the mean value of reported normal range; y/o: years old; m/o: months old; HOM: homozygous; HET: heterozygous; CH: compound heterozygous; CKD: chronic kidney disease; ICARS: The International Cooperative Ataxia Rating Scale; NS: nephrotic syndrome; FSGS: focal segmental glomerulosclerosis; eGFR: estimated Glomerular Filtration Rate; ESRF: end-stage renal failure; SRNS: steroid-resistant nephrotic syndrome; SND: sensorineural deafness; SARA: Scale for the Assessment and Rating of Ataxia; uPCR: urine protein creation ratio; del: deletion; fs: frameshift; dup: duplication; ins: insertion; delins: deletion-insertion. Table S3 Partial effects reported for CoQ10 treatment of primary CoQ deficiency patients. | | TO A LINE OF | Tec | NI C 4' 4 . ' I . I . I . | Re | | | |-------------|---|---|--|--------------------------|---------------------------|----------------| | Gene | Total No. of
treated patients ^a | Effects not described or uncertain ^a | No. of patients included in the analysis | Objective
description | Subjective
description | Not responding | | PDSS1 | 0 | - | 0 | - | - | - | | PDSS2 | 2 | 0 | 2 | 0 | 0 | 2 | | COQ2 | 10 | 3 | 7 | 1 | 0 | 6 | | COQ4 | 21 | 2 | 19 | 3 | 2 | 14 | | COQ5 | 3 | 0 | 3 | 3 | 0 | 0 | | COQ6 | 5 ² | 2^{2} | 3 | 1 | 0 | 2 | | COQ7 | 3 | 0 | 3 | 0 | 0 | 3 | | COQ8A/ADCK3 | 59 ² | 18 ² | 41 | 9 | 2 | 30 | | COQ8B/ADCK4 | 33 | 24 | 9 | 3 | 0 | 6 | | COQ9 | 2 | 0 | 2 | 0 | 0 | 2 | Treatment effects established by quantitative or semi-quantitative measures to describe the response to CoQ_{10} treatment were counted as responding with objective description,
while descriptions of convincingly positive effects but without relying on a quantitative or semi-quantitative measure were counted as responding with subjective description. "Not responding" include the patients who were reported not to respond to CoQ_{10} treatment or whose responses we consider lacking a convincing demonstration of a response to CoQ_{10} supplementation. ^a The number of patients treated with the CoQ derivative idebenone are indicated as superscripts. Table S4 Patient cases classified as not responding to CoQ₁₀ treatment. | Gene
[Patient
ID*] | Mutation | Level of CoQ ₁₀ (% of control ¹) | Age at
onset
(sex) if
known | Symptoms | ${ m CoQ_{10}}$ dose and responses | Note | Reference | |--------------------------|---|---|--------------------------------------|---|--|--|--| | PDSS2 [1] | Q332X/
S382L
(CH) | ~ 14%
(muscle)
~ 12%
(fibroblasts) | 3 m/o
(M) | NS, hypotonia, Leigh syndrome, seizure | 50mg/day beginning at age 3 months, no response, died at age of 8 months [NR] | infantile patient with
multisystem illnesses,
no response observed | (Lopez et al.,
2006; Quinzii et
al., 2008; Salviati
et al., 2012) | | PDSS2 [4] | H162R/
c.1042_1148-
2816del
(CH) | no data | neonatal
(M) | NS, encephalomyopathy,
hypertrophic cardiomyopathy,
deafness, retinitis pigmentosa,
global developmental delay | 20mg/kg/day, no response, died at age of 8 months (1 month after admission) [NR] | infantile patient with
multisystem illnesses,
no response observed | (Ivanyi et al.,
2018) | | COQ2 [3] | Y297C
(HOM) | ~18%
(fibroblasts)
~ 37.5%
(muscle) | 11 m/o
(M) | infantile encephalomyopathy,
SRNS/FSGS, hypotonia, optic
atrophy, tremors, psychomotor
regression | 30 mg/kg/day beginning at age 22months, neurologic picture improved, but no change in renal function [NR] | minimal and ambiguous effects | (Diomedi-
Camassei et al.,
2007; Montini et
al., 2008; Quinzii
et al., 2006;
Quinzii et al.,
2008; Salviati et
al., 2005) | | |--------------|-----------------------------|--|-----------------|--|--|--|--|--| | COQ2
[4] | Y297C
(HOM) | ~ 17%
(fibroblasts) | 12 m/o
(F) | NS/FSGS without any clinical signs of neurologic involvement. | 30 mg/kg/day, there was no improvement during the first 2 weeks of treatment; an episode of acute renal failure required continuous hemofiltration for 4 days. 20 days after the initiation of the treatment, recovery of renal function and a reduced level of proteinuria was observed. After 50 months of therapy, renal function remains normal, though proteinuria was still present (other medication: diuretics) [NR] | minimal and ambiguous effects | (Diomedi-
Camassei et al.,
2007; Montini et
al., 2008; Quinzii
et al., 2006;
Quinzii et al.,
2008; Salviati et
al., 2005) | | | COQ2
[9] | S109N
(HOM) | ~ 11.4%
(fibroblasts) | neonatal (M) | peripheral hypertonia,
cardiomyopathy, hypertrophic
cardiomegaly, nephrotic syndrome | 30mg/kg/day, no response, died at age of 5 months [NR] | infantile patient with
multisystem illnesses,
no response | (Scalais et al.,
2013; Ziosi et al.,
2017) | | | COQ2
[21] | c.288dupC/
R126G
(CH) | no data | 25 y/o
(M) | diffuse glomerulosclerosis, end-
stage nephropathy, retinopathy | 30 mg/kg/day for 6 months, no ERG | · | , | | | COQ2
[22] | c.288dupC/
R126G
(CH) | no data | 21 y/o
(M) | mesangial sclerosis, end-stage
nephropathy, retinopathy,
lymphoma | improvement, but best corrected visual acuity
and areas of retinal atrophy on
autofluorescence were noted to be stable on | a minimal and
ambiguous effect | (Abdelhakim et al., 2020) | | | COQ2
[23] | c.288dupC/
R126G
(CH) | no data | 23 y/o
(F) | retinopathy, end-stage nephropathy | treatment [NR] | | | | | COQ4
[7] | L82Q/
R158Q
(CH) | ~ 16%
(muscle) | neonatal
(F) | seizures, severe lactic and
respiratory acidosis, heart failure | 20 mg/kg/day beginning at the first day of life, which resulted in normalization of lactate and improvement in cardiac function. Nevertheless, the patient continued exhibiting intermittent episodes of lactic acidemia and cardiac decompensation until death (other medications: thiamine, riboflavin, hydroxocobalamin, biotin), died at 2 months of age [NR] | infantile patient, died
shortly despite several
treatment attempts | (Chung et al.,
2015) | | | COQ4
[12] | R240C
(HOM) | no data | neonatal
(F) | poor/absent reflexes, cardiac
hypertrophy, left hip dysplasia,
hypotonia, episodes of apnea and
bradycardia | 15 mg/kg/day beginning at age 1 month, no response [other medications: pyridoxal phosphate, folinic acid, and riboflavin], died at 7 weeks old [NR] | infantile patient, died shortly | | | | COQ4
[14] | T77I
(HOM) | no data | 4 y/o
(M) | tremors, dysarthria, seizure, spastic
tetraparesis and ataxia | 1000mg/day beginning at age 13, the 6 min walk test was stable over the period of a year [NR] | a minimal and ambiguous effect | (Bosch et al., | | | COQ4
[15] | T77I
(HOM) | ~ 22%
(fibroblasts) | 9 y/o
(F) | seizure, dysarthria, spastic
tetraparesis, ataxia | 1000mg/day beginning at age 11, the 6 min walk test was stable over a year, developed a second stroke-like episode at age 14 [NR] | a minimal and ambiguous effect | 2018) | | | COQ4
[17] | G124S
(HOM) | ~ 50%
(fibroblasts) | neonatal
(F) | motor deterioration, weak
responsiveness, dystonia,
nystagmus, respiratory distress,
seizure | 50 mg/kg/day starting at the age of 12 months, improvement in seizure, screaming, and respiratory distress, no improvement in nystagmus, dystonia, psychomotor development, and ambulation [NR] | minimal and ambiguous effects | (Lu et al., 2019) | |--------------|------------------------------|-----------------------------------|-----------------|--|---|--|---| | COQ4
[19] | G95D/
R102H
(CH) | ~ 98%
(fibroblasts) | 5 y/o
(F) | cognitive impairment, dysmetria,
spastic ataxia, seizure | 100mg/kg/day of ubiquinol, no response after 6 months (as assessed by the SARA scale) [NR] | no response observed | (Mero et al., 2021) | | COQ4
[23] | G124S/
c.402+1G>C
(CH) | low
(fibroblasts) | neonatal
(M) | encephalopathy, cardiomyopathy,
visual and hearing impairment,
respiratory failure, apnea,
developmental delay | 40 mg/kg/day beginning at 5 months of age, poor response, died at 8 months of age [NR] | infantile patient with
multisystem illness,
died shortly | | | COQ4
[24] | G124S/
c.402+1G>C
(CH) | no data | neonatal
(M) | cardiomyopathy, respiratory
distress, metabolic acidosis | 15 mg/kg/day, no response [other medication: carnitine], died at 2.5 days of age [NR] | infantile patient, died shortly after birth | | | COQ4
[25] | G124S
(HOM) | no data | neonatal
(F) | cardiomyopathy, seizure,
developmental delay | treated, dose not described, cardiac function improved gradually and normalized after 10 days [other medication: intravenous immunoglobulin] [NR] | a minimal effect | | | COQ4
[26] | G124S/
c.402+1G>C | no data | neonatal
(F) | seizure, apnea, encephalopathy, cardiomyopathy | started at the age of 4 years and 5 months, dose not described, no response observed after 1 month of treatment [NR] | no response observed
after 1 month of
treatment | (Yu et al., 2019) | | COQ4
[27] | (CH) | no data | 2 m/o
(F) | seizure, respiratory distress, cardiomegaly | started at 1 year of age, dose not described, no response, passed away 1 month later [NR] | infantile patient, died
shortly after start of
CoQ ₁₀ treatment | | | COQ4
[28] | W184R/
c.402+1G>C
(CH) | low
(fibroblasts) | 8 m/o
(M) | microcephaly, developmental delay,
dystonia, visual impairment, oro-
motor dysfunction | dose not described, no response [NR] | no response observed | | | COQ4
[28] | G124S
(HOM) | low
(fibroblasts) | infancy
(F) | visual impairment, dystonia,
spasticity, developmental delay | since 2 years old, dose not described, no response, died at 3.5 years of age [NR] |
died while on CoQ ₁₀ treatment | | | COQ4
[30] | G124V/
G124S
(CH) | low
(fibroblasts) | infancy
(F) | encephalopathy, dystonia,
spasticity, developmental delay,
visual impairment, seizure | beginning at 9 months of age, dose not described, subjective improvement in response [other medication: levetiracetam] [NR] | a minimal effect | | | COQ6
[6] | G255R
(HOM) | no data | 0.3 y/o | SRNS, SND, facial dysmorphism | 100mg/day, improvement of SND [NR] | a minimal effect | (Heeringa et al., 2011) | | COQ6
[17] | R360W/
c.804delC
(CH) | no data | 2 y/o
(F) | steroid-resistant glomerulopathy,
poor growth | 30 mg/kg/day, remission of glomerulopathy
after 1 month of treatment, growth acceleration
after 12 months and a reduction of respiratory
airway infections [NR] | minimal and ambiguous effects | (Koyun et al.,
2019; Stanczyk et
al., 2018) | | COQ7
[1] | V141E
(HOM) | ~ 10%
(fibroblasts,
muscle) | neonatal
(M) | muscular hypotonia, developmental
retardation, learning disabilities,
hearing impairment, visual
dysfunction, not able to sit and walk
independently | initially treated with idebenone, switched to COQ ₁₀ after the diagnosis of a primary CoQ ₁₀ deficiency (around age of 10 years), dosage unknown, stalling the regression and significantly reducing the pain were noted [NR] | minimal effects | (Freyer et al.,
2015) | | COQ7
[2] | L111P
(HOM) | ~ 70%
(fibroblasts) | 14 m/o
(F) | spasticity, muscle wasting, inability to walk without support | 22.8 mg/kg/day, no response after 3 months of treatment [NR] | no response observed | (Wang et al.,
2017b) | | COQ7
[3] | K200IfsX56/
R107W
(CH) | ~ 12%
(fibroblasts) | neonatal
(M) | cardiomyopathy, growth
retardation, hypotonia, ptosis, visual
impairment, hearing impairment,
muscle weakness, infantile spasms | beginning at 2 months of age, and the dose was increased to 20 mg/kg/day at 12 months of life, the patient died around the same time [NR] | infantile patient with
multisystem illness, no
response | (Kwong et al, 2019) | |---------------|--------------------------------|--|------------------|--|--|---|---------------------------------| | COQ8A
[1] | R213W/
G272V
(CH) | ~ 29%
(muscle) | 18 m/o
(F) | hypotonia, <i>talus valgus</i> ,
developmental delay, seizure,
ataxia, epilepsia partialis continua | 20 mg/kg/day (350mg/day) for 8 years, no response [NR] | no response observed | (Mignot et al., 2013; Mollet et | | COQ8A
[2] | R213W/
G272V
(CH) | no data | 2 y/o
(F) | hypotonia, seizure, ataxia,
developmental delay | 350mg/day for 13 months, no response [NR] | no response observed | al., 2008) | | COQ8A
[3] | E551K
(HOM) | ~ 8%
(muscle),
normal range
(fibroblasts) | 18 m/o
(M) | cerebella ataxia, strabismus, muscle
weakness, trunk hypotonia, tonic
seizure | 5mg/kg/day from age 3 years, 10mg/kg/day
from age 4 to 7, no response; followed by
10mg/kg/day of idebenone for 7 months which
worsened the patient's conditions [NR] | no response observed | (Mollet et al., 2008) | | COQ8A
[21] | R271C/
A304T
(CH) | normal range
(muscle) | 15 y/o
(F) | cerebellar ataxia, tremors | 300 mg/day, no response after 6 months [NR] | no response observed | | | COQ8A
[22] | A304V
(HOM) | ~ 8%
(muscle) | 27 y/o
(F) | cerebellar ataxia, upper-limb
myoclonus, seizure, dysmetria,
cataract | 300 mg/day, no response after 6 months [NR] | no response observed | | | COQ8A
[23] | R299W
(HOM) | no data | 1 y/o
(F) | cerebellar ataxia, seizure, mental
retardation, unable to walk by 12
years | 200 mg/day, no response within 2 months [NR] | no response observed | | | COQ8A
[24] | Y429C/? | ~ 22%
(muscle) | 1.5-2 y/o
(F) | ataxia, muscle weakness, cognitive
impairment, horizontal nystagmus,
bilateral dysmetria, tremors | 200 mg/day, no response within 2 months [NR] | no response observed | | | COQ8A
[29] | D305Y
(HOM) | low
(muscle) | 5 y/o
(M) | developmental delay, intellectual
disability, ataxia, isolated pan-
cerebellar features including head
titubation, dysmetria,
dysdiadochokinesia | 800mg/day, inconsistent use for 2 years, no response [NR] | no response observed | | | COQ8A
[38] | A339T/
Y361
(CH) | no data | 42 y/o
(M) | cerebellar ataxia, stroke-like
episode, muscle weakness, hearing
loss | dosage not described, no response [NR] | no response observed | (Horvath et al., 2012) | | COQ8A
[39] | A337T
(HOM) | no data | 6 y/o
(M) | cerebellar ataxia, dystonia, tremor, | 600mg/day, no response [NR] | no response observed | | | COQ8A
[51] | R301W/
E446AfsX33
(CH) | low
(muscle) | 3 y/o
(M) | ataxia | 10 mg/kg/day, no response [NR] | no response observed | | | COQ8A
[52] | R301W/
E446AfsTer33
(CH) | no data | 2 y/o
(M) | ataxia, developmental retardation | 10 mg/kg/day, no response [NR] | no response observed | | | COQ8A
[53] | R348X
(HOM) | low
(muscle) | 10 y/o
(F) | epilepsy, ataxia | 600mg/day, no response [NR] | no response observed | | | COQ8A
[54] | R301W
(HOM) | low
(muscle) | 8 y/o
(F) | ataxia, seizure, cardiomyopathy | 400mg/day, no response [NR] | no response observed | | | COQ8A
[78] | R299W/
R410X
(CH) | no data | 4 y/o
(F) | ataxia, dysmetria, seizure | 300mg/day for1 month, withdrawn, reversible side effect of treatment (anorexia) [NR] | no response observed | | | COQ8A
[79] | R299W/
R410X
(CH) | no data | 4 y/o
(M) | ataxia, dysmetria, seizure | 300mg/day for1 month, withdrawn, reversible side effect of treatment (diarrhea) [NR] | no response observed | | |----------------|--|--------------------------|------------------|--|--|-------------------------------|-----------------------------| | COQ8A
[80] | R271C
(HOM) | low
(plasma) | 1.5 y/o
(F) | ataxia, seizure, dystonia, chorea,
dysmetria, myoclonus, spasticity | 30 mg/kg/day for 3 years, no response [NR] | no response observed | | | COQ8A
[81] | L197VfsX20
(HOM) | no data | 19 y/o
(F) | ataxia. dysmetria | 1200mg/day for 1 year no response [NR] | no response observed | | | COQ8A
[82] | L197VfsX20
(HOM) | no data | 19 y/o
(F) | ataxia. dysmetria, seizure | 1200mg/day for 1 year, no response [NR] | no response observed | | | COQ8A
[83] | Q360_Y361ins
X
(HOM) | no data | 2 y/o
(F) | ataxia. Dysmetria, tremors | 800mg/day for 1 year, no response [NR] | no response observed | | | COQ8A
[84] | R299W
(HOM) | ~ 10-24%
(muscle) | 7 y/o
(F) | ataxia, seizure, tremor | 900mg/day for 6 months, no response [NR] | no response observed | (Hikmat et al., | | COQ8A
[87] | R299W
(HOM) | no data | 2 y/o
(F) | ataxia, epilepsy, seizure, feeding difficulties | 1000mg/day of deoxyubiquinone (probably ubiquinol) since age of 18, no response [NR] | no response observed | 2016) | | COQ8A
[96] | L277P/
c.1506+1G>A
(CH) | normal range
(plasma) | childhood
(F) | ataxia | 20 mg/kg/day, minimal improvement in an ataxia assessment score at 1-year follow-up [NR] | minimal effects | (Jacobsen et al.,
2018) | | COQ8A
[103] | c.656-1G>T
(HOM) | no data | 20 y/o
(F) | ataxia, writer's cramp | 60mg/day of ubiquinol, initiated at 20 years old, stopped after only 2 months due to incompliance, no response [NR] | no response observed | (A | | COQ8A
[104] | c.656-1G>T
(HOM) | no data | 7 y/o
(M) | ataxia, writer's cramp | 60mg/day of ubiquinol, initiated at 25 years old, due to adverse event (frequent headache); switched to 5mg/kg/day of CoQ ₁₀ ; no response at 1-year follow-up [NR] | no response observed | (Amprosi et al.,
2021) | | COQ8A
[107] | R301W/
E446AfsX33
(CH) | no data | 3 y/o
(M) | ataxia, tremors, epilepsy, mild intellectual retardation | 15 mg/kg/day for 6 months, no improvement
in motor performance (Timed 25-foot walk
test, SARA) | no response observed | | | COQ8A
[108] | R301W/
E446AfsX33
(CH) | no data | 3 y/o
(M) | ataxia, mild intellectual retardation | 15 mg/kg/day for 6 months, no improvement
in motor performance (Timed 25-foot walk
test, SARA) | no response observed | | | COQ8A
[109] | G615D/
L197VfsX20
(CH) | no data | 6 y/o
(F) | ataxia, tremors | 15 mg/kg/day for 1 year, improvement in
Timed 25-foot walk but no significant change
in SARA, gait analysis parameters and 6 min
walking test | minimal and ambiguous effects | (Schirinzi et al.,
2019) | | COQ8A
[110] | R301W/
c.589-3C > G
(splice)
(CH) | no data | 2 y/o
(F) | epilepsy, mild intellectual retardation | 15 mg/kg/day for 1 year, improvement in
Timed 25-foot walk but no significant change
in SARA, gait analysis parameters and 6 min
walking test | minimal and ambiguous effects | | | COQ8A
[111] | G27C
(HOM) | no data | 2 y/o
(F) | seizure, developmental regression,
hypothyroidism, mitral
regurgitation, mitral valve prolapse,
cerebellar atrophy, and epilepsia
partialis continua | treated with CoQ ₁₀ after 11
years of age, dosage unknown, no effect on seizure frequency [NR] | no response observed | (Ashrafi et al.,
2022) | | COQ8B
[57] | D209H/
C306X
(CH) | no data | 14 y/o
(M) | NS/FSGS | 150mg/day, a very limited reduction in the severity of urine protein/creatine ratio after 3 months of treatment [NR] | a minimal effect | (Yang et al., 2018) | | COQ8B
[74] | R477Q
(HOM) | no data | 17.8 y/o
(F) | CKD, autism, hypothyroidism, intellectual impairment | 20-30mg/kg/day for 11 months, no response [NR] | no response observed | (Atmaca et al., 2017) | |---------------|--|---|-----------------|--|---|----------------------------------|---| | COQ8B
[83] | D209H/
S205N
(CH) | no data | 11 y/o
(F) | NS/FSGS, proteinuria | 15 to 30mg/kg/day, proteinuria was persistent,
and serum creatine and urea nitrogen were
increased at 1-year follow up [NR] | no response observed | (Feng et al., 2017) | | COQ8B
[84] | COQ8B
(D250H, HOM)
NPHS1
(E447K, HOM) | no data | 9 y/o
(F) | SRNS/FSGS, dyspnea, weakness, cardiac dysfunction | dosage is not described, given with metoprolol tartrate, losartan potassium, and peritoneal dialysis. At a 2-years follow-up, renal dysfunction was persistent but remained stable, while heart function showed no improvement [NR] | no response observed | (Zhang et al.,
2017) | | COQ8B
[85] | COQ8B
(D250H, HOM)
NPHS1
(E447K, HOM) | no data | 2 y/o
(M) | SRNS/FSGS | After the genetic diagnosis, prednisone and tacrolimus were withdrawn and CoQ ₁₀ treatment started. Renal function showed a slight increase at 2-years follow-up [NR] | a minimal effect | , | | COQ8B
[87] | I346S/
W520X
(CH) | no data | 5 y/o
(F) | FSGS, proteinuria, rhabdomyolysis | 2100mg/day since the age of 18 years, developed ESRD a year later [NR] | no effect on disease progression | (AbuMaziad et al., 2021) | | COQ9
[1] | R244X
(HOM) | ~ 15%
(muscle)
~ 18%
(fibroblasts) | neonatal
(M) | renal tubulopathy, ventricular
hypertrophy, seizure, cerebellar
atrophy, development delay | initiated at 11.5 months of age at the dose of 60mg/day and increasing to 300mg/day (after 6 days) which was continued until the patient's death, no response [NR] | no response observed | (Duncan et al.,
2009; Quinzii and
Hirano, 2010;
Quinzii et al.,
2010; Rahman et
al., 2001) | | COQ9
[3] | G129VfsX17
(HOM) | no data | 4 m/o
(F) | seizure, hypotonia, dysmorphic
features, growth retardation,
microcephaly | initiated at 10 months of age at the dose of 5mg/kg/day and increasing to 50mg/kg/day after the genetic diagnosis, no response [NR] | no response observed | (Olgac et al.,
2020) | ^{*}Patient IDs are the same as in **Table S1**. ¹CoQ levels are shown as reported or as a percentage relative to the mean value of reported normal range; y/o: years old; m/o: months old; HOM: homozygous; HET: heterozygous; CH: compound heterozygous; CSF: cerebrospinal fluid; RCC: respiratory chain complex; CI: complex I; CII: complex II; CIII: complex III; CS: citrate synthase; COX: cytochrome c oxidase; CKD: chronic kidney disease; ICARS: The International Cooperative Ataxia Rating Scale; ETC: electron transport chain; NS: nephrotic syndrome; FSGS: focal segmental glomerulosclerosis; eGFR: estimated Glomerular Filtration Rate; ESRF: end-stage renal failure; ERG: electroretinography; SDH: succinate dehydrogenase; SRNS: steroid-resistant nephrotic syndrome; SND: sensorineural deafness; SARA: Scale for the Assessment and Rating of Ataxia; uPCR: urine protein creation ratio; del: deletion; fs: frameshift; dup: duplication; ins: insertion; delins: deletion-insertion. Table S5 Cases with positive outcomes following CoQ_{10} treatment, classified as responding. | Gene
[Patient ID*] | Mutation | Level of CoQ ₁₀ (% of control) ¹ | Age at onset
(sex) if known | Symptoms | CoQ ₁₀ dose and responses | Category of description of CoQ ₁₀ treatment effects | Reference | |-----------------------|---|--|--------------------------------|---|---|---|----------------------------| | COQ2
[25] | Y353C/
T325A
(CH) | no data | 7 m/o
(F) | SRNS | 30 mg/kg/ day beginning at age 11 months, urinary protein decreased with the increasing dose of CoQ ₁₀ , and an increase of serum albumin, now on the dosage of 600mg/day [Obj.] | objective, as a
decrease of proteinuria
was reported | (Li et al.,
2021) | | COQ4
[1] | mono-
allelic
deletion
(CH) | ~ 43%
(fibroblasts) | neonatal
(M) | dysmorphic features, mental retardation, encephalomyopathy | 30 mg/kg/day, improvement in physical status and social function. Conditions worsened (weakness and diffuse myalgia) after formulation change and dosage reduction to 2mg/kg/day. Remission of symptoms within a week after reverting back to the original dosage. Then switched to 15mg/kg/day of ubiquinol [Obj.] | objective, loss of response after treatment interruption and remission after resuming CoQ ₁₀ treatment | (Salviati et
al., 2012) | | COQ4
[18] | P193S/
R240C
(CH) | ~ 95%
(fibroblasts) | 2.5 y/o
(M) | developmental delay,
hypotonia, sialorrhea,
spasticity, ataxia | 30 mg/kg/day of ubiquinol, improvement in
neuromuscular symptoms after 2 months,
further improvement of motor skills in the
following months, but speech delay and
cognitive impairment persisted [Subj.] | subjective, as
improvement of more
than one symptom was
reported | (Mero et al., 2021) | | COQ4
[20] | G55V | normal range
(blood) | 8 y/o
(M) | ataxia, spasticity, epilepsy,
cognitive deterioration,
dysarthria, dysmetria and
dysdiadochokinesia | 2000 mg/day, improvement of SARA score, dysarthria is persistent [obj.] | objective, as
improvement of
SARA score was
reported | | | COQ4
[21] | (CH) | normal range
(blood) | 8 y/o
(F) | dysarthria, spastic ataxia,
epilepsy, cognitive
deterioration, dysmetria,
dysdiadochokinesia | Treated, dose not described, improvement of SARA score, gait difficulty and dysarthria are persistent [obj.] | objective, as
improvement of
SARA score was
reported | (Caglayan et al., 2019) | | COQ4
[32] | | no data | 2 m/o
(F) | hypotonia, developmental
delay, bilateral cortical
blinding, seizure,
cardiomyopathy | 30mg/kg/day beginning at 11 months of age, some improvement in seizure control and development [Subj.] | subjective, as
improvement of more
than one symptom was
reported | | | COQ5
[1] | biallelic
duplication of
last 4 exons | ~ 57%
(muscle)
~ 50%
(leukocytes) | childhood
(F) | ataxia, dysarthria, seizures,
cognitive disability, behavioral
problems, epilepsy, myoclonus,
dysarthric cerebellar speech,
dysmetria, mild tremors and
mild lower limb spasticity | dose not described, improvement of ICARS scoring after 3 months, the patient appeared to have a quicker response rate during conversation and better alertness [Obj.] | objective, as
improvement of
SARA score was
reported | | | COQ5
[2] | | ~ 66%
(leukocytes) | childhood
(F) | mild static gait ataxia, mild
dysarthria, mild dysmetria and
oculomotor apraxia, and
horizontal nystagmus | dose not described, improvement of ICARS scoring after 3 months, the patient appeared to have a quicker response rate during conversation and better alertness [Obj.] | objective, as
improvement of ICAR
score was reported | (Malicdan et al., 2018) | | COQ5
[3] | | ~ 60%
(leukocytes) | childhood (F) | mild motor delay, mild learning
difficulties, mild cerebellar
ataxia, mild cerebellar | dose not described, improvement of ICARS scoring after 3 months, the patient appeared to have a quicker response rate during conversation and better alertness [Obj.] | objective, as
improvement of ICAR
score was reported | | | | | | | dysarthria and horizontal nystagmus | | | | |---------------|--|--|---------------|---|--
--|---| | COQ6
[9] | A353D
(HOM) | no data | 2.5 y/o | SRNS, SND | beginning at age 5.5 years, dose not described, decrease of proteinuria but no hearing improvement, reoccurrence of proteinuria after temporary cessation of CoQ ₁₀ treatment and it decreased again after the treatment resumed [Obj.] | objective, loss of response after treatment interruption and remission after resuming CoQ ₁₀ treatment | | | COQ8A
[4] | G272D/
Q605GfsX125
(CH) | < 5%
(muscle),
normal range
(fibroblasts) | 3 y/o
(F) | exercise intolerance, muscle
weakness, cerebellar
syndromes, seizure | 6 mg/kg/day (750mg/day) of CoQ ₁₀ and L-carnitine were initiated at age 5, improved exercise tolerance and fewer vomiting episodes were noted after 3 months of therapy. CoQ ₁₀ was replaced with idebenone (5mg/kg/day) at the age of 9 years, and within the following 4 months, severe exercise intolerance reappeared with numerous episodes of vomiting. Reverting to CoQ ₁₀ treatment resulted in returns to the previous clinical status within 3 months. [Obj.] | objective, loss of response after treatment interruption and remission after resuming CoQ ₁₀ treatment | (Aure et al.,
2004; Mignot
et al., 2013;
Mollet et al.,
2008) | | COQ8A
[18] | T584delACC/
P502R
(CH) | no data | 2 y/o
(F) | cerebellar ataxia, dysarthria,
nystagmus, cognitive decline,
psychiatric disorder | 20mg/kg/day initiated at age 5, partial improvement in motor skills, balance, and strength; after 6 years, treatment was discontinued, and the patient's condition deteriorated. [Obj.] | objective, as improvement in more than symptom was reported and the patient's condition worsened after stopping CoQ ₁₀ treatment | (Blumkin et al., 2014) | | COQ8A
[20] | S616LfsX114/
R301Q
(CH) | ~ 45%
(plasma) | 9 y/o
(M) | exercise intolerance, cerebellar ataxia, tremors, dysautonomia | 120mg/day, self-reported fatigue and exercise tolerance improved after 2 weeks of therapy. After 2 years of therapy, ataxia and head tremor diminished and SARA total score improved. When the treatment was stopped for a month, the patient's condition deteriorated, rendering him to resume taking CoQ ₁₀ . [Obj.] | objective, as improvement of more than one symptom, including SARA score, was reported; and the patient' condition worsened after stopping CoQ ₁₀ treatment | (Zhang et al., 2020) | | COQ8A
[25] | S616LfsX114
(HOM) | ~ 35%
(fibroblasts) | 10 y/o
(F) | cerebellar ataxia, myoclonus,
slurred speech, wheelchair-
dependent by 30 years of age | 400mg/day, improvement in myoclonic symptoms, speech quality (after 3 months), and ataxia with a reduction in SARA (after 6 months) [Obj.] | objective, as
improvement of more
than one symptom,
including SARA
score, was reported | (Liu et al.,
2014) | | COQ8A
[27] | R301W/
c.1399-3_
1408del
(CH) | low
(muscle) | 11 y/o
(M) | reduced dexterity, dysarthria,
hypometric saccades, scanning
speech, and dystonic posturing,
tremors, ataxia | 800mg/day, a resolution of tremors and improvement of limb and truncal dystonia after 9 months of treatment [Subj.] | subjective, as
improvement of more
than one symptom was
reported | (Chang et al., | | COQ8A
[28] | T584del/
T511M
(CH) | low
(muscle) | 10 y/o
(F) | ataxia, tremors, dysarthria,
appendicular dysmetria, truncal
instability, titubation, | 800mg/day, improvement of ataxia overall with a reduction in SARA score, able to work independently, after 9 months of therapy. [Obj.] | objective, as improvement of more than one symptom, | 2018) | | | | | | wheelchair-dependent by 53 years of age | | including SARA
score, was reported | | |----------------|----------------------------------|--|----------------|---|---|--|--------------------------| | COQ8A
[76] | del exons 3-15/
F508S
(CH) | no data | 6 y/o
(M) | ataxia. dysmetria, myoclonus | 300mg/day for 15 months, improvement in movement disorder and SARA score [Obj.] | objective, as improvement of more than one symptom, including SARA score, was reported | | | COQ8A
[77] | R299W/
L453RfsX24
(CH) | normal range
(fibroblasts) | 15 y/o
(M) | ataxia, seizure, myoclonus,
dysmetria | 300mg/day for 8 months, improvement in movement disorder [Subj.] | subjective, as
improvement of more
than one symptom was
reported | | | COQ8A
[85] | R299W/
F578V
(CH) | ~ 34-60%
(muscle) | 7 y/o
(M) | ataxia, seizure, dysmetria,
tremors, dysarthria,
dysdiadochokinesia | 600mg/day since the age of 33, improvement in balance and coordination (reported by the patient) and a reduction of SARA score [Obj.] | objective, as
improvement of more
than one symptom,
including SARA
score, was reported | | | COQ8A
[95] | L277P/
c.1506+1G>A
(CH) | low
(muscle)
normal range
(plasma) | childhood (F) | ataxia, dysmetria, hypotonia | 20 mg/kg/day, improvement in an ataxia assessment score at 1-year follow-up [Obj.] | objective, as improvement of an ataxia assessment score was reported | (Jacobsen et al., 2018) | | COQ8A
[112] | L609V
(HET) | moderate
deficiency in
fibroblasts and
muscle | unknown
(F) | ataxia | 30mg/kg/day from 8 years old, a reduction in ICARS after years of treatment [Obj.] | objective, as
improvement of an
ataxia assessment
score was reported | (Pineda et al., 2010) | | COQ8B
[16] | R178W
(HOM) | no data | 30 y/o
(F) | NS/FSGS | 20 mg/kg/day, a decrease in uPCR and stabilization of eGFR [Obj.] | objective, as
improvement of more
than one symptom,
including uPCR was
reported | (Maeoka et
al., 2020) | | COQ8B
[82] | D250H/
R178W
(CH) | no data | 9 m/o
(F) | proteinuria | 15 to 30mg/kg/day, a reduction of urine protein at 1-year follow-up [Obj.] | objective, as
improvement of
proteinuria was
reported | (Feng et al., 2017) | | COQ8B
[86] | R91C/
S246N
(HOM) | no data | 3 y/o
(M) | Isolated (non-nephrotic)
proteinuria | 15 mg/kg/day, a decrease of proteinuria within 4-months follow-up [Obj.] | objective, as
improvement of
proteinuria was
reported | (Zhai et al.,
2020) | ^{*}Patient IDs are the same as in **Table S1**. ¹CoQ levels are shown as reported or as a percentage relative to the mean value of reported normal range; y/o: years old; m/o: months old; HOM: homozygous; HET: heterozygous; CH: compound heterozygous; ICARS: The International Cooperative Ataxia Rating Scale; NS: nephrotic syndrome; FSGS: focal segmental glomerulosclerosis; eGFR: estimated Glomerular Filtration Rate; SRNS: steroid-resistant nephrotic syndrome; SND: sensorineural deafness; SARA: Scale for the Assessment and Rating of Ataxia; uPCR: urine protein creation ratio; del: deletion; fs: frameshift; dup: duplication; ins: insertion; delins: deletion-insertion. **Fig. S1 The violin plot of total CoQ**₁₀ **amounts taken.** The amounts were calculated as dosage/day x duration. Only the treatments for which CoQ_{10} dosages were reported as mg/day and durations were also reported are included in this analysis (14 patients in the non-responding group and 6 patients in the responding group). ns: not significant (Student's *t*-test). Of note, because of the scale of the Y-axis, the median of total CoQ_{10} taken for the non-responding group looks small and close to zero. ## References - Abdelhakim, A.H., A.V. Dharmadhikari, S.D. Ragi, J.R.L. de Carvalho, Jr., C.L. Xu, A.L. Thomas, C.M. Buchovecky, M.M. Mansukhani, A.B. Naini, J. Liao, V. Jobanputra, I.H. Maumenee, and S.H. Tsang. 2020. Compound heterozygous inheritance of two novel COQ2 variants results in familial coenzyme Q deficiency. *Orphanet J Rare Dis.* 15:320. - AbuMaziad, A.S., T.M. Thaker, T.M. Tomasiak, C.C. Chong, M.K. Galindo, and H.E. Hoyme. 2021. The role of novel COQ8B mutations in glomerulopathy and related kidney defects. *American journal of medical genetics. Part A.* 185:60-67. - Amprosi, M., M. Zech, R. Steiger, W. Nachbauer, A. Eigentler, E.R. Gizewski, M. Guger, E. Indelicato, and S. Boesch. 2021. Familial writer's cramp: a clinical clue for inherited coenzyme Q10 deficiency. *Neurogenetics*. 22:81-86. - Ashraf, S., H.Y. Gee, S. Woerner, L.X. Xie, V. Vega-Warner, S. Lovric, H. Fang, X. Song, D.C. Cattran, C. Avila-Casado, A.D. Paterson, P. Nitschke, C. Bole-Feysot, P. Cochat, J. Esteve-Rudd, B. Haberberger, S.J. Allen, W. Zhou, R. Airik, E.A. Otto, M. Barua, M.H. Al-Hamed, J.A. Kari, J. Evans, A. Bierzynska, M.A. Saleem, D. Bockenhauer, R. Kleta, S. El Desoky, D.O. Hacihamdioglu, F. Gok, J. Washburn, R.C. Wiggins, M. Choi, R.P. Lifton, S. Levy, Z. Han, L. Salviati, H. Prokisch, D.S. Williams, M. Pollak, C.F. Clarke, Y. Pei, C. Antignac, and F. Hildebrandt. 2013. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. *J Clin Invest*. 123:5179-5189. - Ashrafi, M.R., R. Haghighi, R.S. Badv, H. Ghabeli, A.R. Tavasoli, E. Pourbakhtyaran, Z. Rezaei, N. Mahdieh, P. Mohammadi, and M. Heidari. 2022. Epilepsia Partialis Continua a Clinical Feature of a Missense Variant in the ADCK3 Gene and Poor Response to Therapy. *J Mol Neurosci*. - Atmaca, M., B. Gulhan, E. Korkmaz, M. Inozu, O. Soylemezoglu, C. Candan, A.K. Bayazit, A.M. Elmaci, G. Parmaksiz, A. Duzova, N. Besbas, R. Topaloglu, and F. Ozaltin. 2017. Follow-up
results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. *Pediatr Nephrol.* 32:1369-1375. - Aure, K., J.F. Benoist, H. Ogier de Baulny, N.B. Romero, O. Rigal, and A. Lombes. 2004. Progression despite replacement of a myopathic form of coenzyme Q10 defect. *Neurology*. 63:727-729. - Blumkin, L., E. Leshinsky-Silver, A. Zerem, K. Yosovich, T. Lerman-Sagie, and D. Lev. 2014. Heterozygous Mutations in the ADCK3 Gene in Siblings with Cerebellar Atrophy and Extreme Phenotypic Variability. *JIMD Rep.* 12:103-107. - Bosch, A.M., E.J. Kamsteeg, R.J. Rodenburg, A.W. van Deutekom, D.R. Buis, M. Engelen, and J.M. Cobben. 2018. Coenzyme Q10 deficiency due to a COQ4 gene defect causes childhood-onset spinocerebellar ataxia and stroke-like episodes. *Mol Genet Metab Rep.* 17:19-21. - Brea-Calvo, G., T.B. Haack, D. Karall, A. Ohtake, F. Invernizzi, R. Carrozzo, L. Kremer, S. Dusi, C. Fauth, S. Scholl-Burgi, E. Graf, U. Ahting, N. Resta, N. Laforgia, D. Verrigni, Y. Okazaki, M. Kohda, D. Martinelli, P. Freisinger, T.M. Strom, T. Meitinger, C. Lamperti, A. Lacson, P. Navas, J.A. Mayr, E. Bertini, K. Murayama, M. Zeviani, H. Prokisch, and D. Ghezzi. 2015. COQ4 - mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. *Am J Hum Genet*. 96:309-317. - Bujan, N., A. Arias, R. Montero, J. Garcia-Villoria, W. Lissens, S. Seneca, C. Espinos, P. Navas, L. De Meirleir, R. Artuch, P. Briones, and A. Ribes. 2014. Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency. *Journal of inherited metabolic disease*. 37:53-62. - Caglayan, A.O., H. Gumus, E. Sandford, T.L. Kubisiak, Q. Ma, A.B. Ozel, H. Per, J.Z. Li, V.G. Shakkottai, and M. Burmeister. 2019. COQ4 Mutation Leads to Childhood-Onset Ataxia Improved by CoQ10 Administration. *Cerebellum*. 18:665-669. - Chang, A., M. Ruiz-Lopez, E. Slow, M. Tarnopolsky, A.E. Lang, and R.P. Munhoz. 2018. ADCK3-related Coenzyme Q10 Deficiency: A Potentially Treatable Genetic Disease. *Mov Disord Clin Pract*. 5:635-639. - Cheng, H.L., Y.R. Shao, Y. Dong, H.L. Dong, L. Yang, Y. Ma, Y. Shen, and Z.Y. Wu. 2021. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias. *Transl Neurodegener*. 10:40. - Chung, W.K., K. Martin, C. Jalas, S.R. Braddock, J. Juusola, K.G. Monaghan, B. Warner, S. Franks, M. Yudkoff, L. Lulis, R.H. Rhodes, V. Prasad, E. Torti, M.T. Cho, and M. Shinawi. 2015. Mutations in COQ4, an essential component of coenzyme Q biosynthesis, cause lethal neonatal mitochondrial encephalomyopathy. *J Med Genet*. 52:627-635. - Cotta, A., C.L. Alston, S. Baptista-Junior, J.F. Paim, E. Carvalho, M.M. Navarro, M. Appleton, Y.S. Ng, J. Valicek, A.L. da-Cunha-Junior, M.I. Lima, A. de la Rocque Ferreira, R.I. Takata, I.P. Hargreaves, G.S. Gorman, R. McFarland, G. Pierre, and R.W. Taylor. 2020. Early-onset coenzyme Q10 deficiency associated with ataxia and respiratory chain dysfunction due to novel pathogenic COQ8A variants, including a large intragenic deletion. *JIMD Rep.* 54:45-53. - Danhauser, K., D. Herebian, T.B. Haack, R.J. Rodenburg, T.M. Strom, T. Meitinger, D. Klee, E. Mayatepek, H. Prokisch, and F. Distelmaier. 2016. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. *Eur J Hum Genet*. 24:450-454. - Dinwiddie, D.L., L.D. Smith, N.A. Miller, A.M. Atherton, E.G. Farrow, M.E. Strenk, S.E. Soden, C.J. Saunders, and S.F. Kingsmore. 2013. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. *Genomics*. 102:148-156. - Diomedi-Camassei, F., S. Di Giandomenico, F.M. Santorelli, G. Caridi, F. Piemonte, G. Montini, G.M. Ghiggeri, L. Murer, L. Barisoni, A. Pastore, A.O. Muda, M.L. Valente, E. Bertini, and F. Emma. 2007. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. *J Am Soc Nephrol*. 18:2773-2780. - Duncan, A.J., M. Bitner-Glindzicz, B. Meunier, H. Costello, I.P. Hargreaves, L.C. Lopez, M. Hirano, C.M. Quinzii, M.I. Sadowski, J. Hardy, A. Singleton, P.T. Clayton, and S. Rahman. 2009. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. *Am J Hum Genet*. 84:558-566. - Fareed, M., V. Makkar, R. Angral, M. Afzal, and G. Singh. 2021. Whole-exome sequencing reveals a novel homozygous mutation in the COQ8B gene associated with nephrotic syndrome. *Scientific reports*. 11:13337. - Feng, C., Q. Wang, J. Wang, F. Liu, H. Shen, H. Fu, and J. Mao. 2017. Coenzyme Q10 supplementation therapy for 2 children with proteinuria renal disease and ADCK4 mutation: Case reports and literature review. *Medicine (Baltimore)*. 96:e8880. - Freyer, C., H. Stranneheim, K. Naess, A. Mourier, A. Felser, C. Maffezzini, N. Lesko, H. Bruhn, M. Engvall, R. Wibom, M. Barbaro, Y. Hinze, M. Magnusson, R. Andeer, R.H. Zetterstrom, U. von Dobeln, A. Wredenberg, and A. Wedell. 2015. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. *J Med Genet*. - Galosi, S., E. Barca, R. Carrozzo, T. Schirinzi, C.M. Quinzii, M. Lieto, G. Vasco, G. Zanni, M. Di Nottia, D. Galatolo, A. Filla, E. Bertini, F.M. Santorelli, V. Leuzzi, R. Haas, M. Hirano, and J. Friedman. 2019. Dystonia-Ataxia with early handwriting deterioration in COQ8A mutation carriers: A case series and literature review. *Parkinsonism Relat Disord*. 68:8-16. - Gerards, M., B. van den Bosch, C. Calis, K. Schoonderwoerd, K. van Engelen, M. Tijssen, R. de Coo, A. van der Kooi, and H. Smeets. 2010. Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy. *Mitochondrion*. 10:510-515. - Gigante, M., S. Diella, L. Santangelo, E. Trevisson, M.J. Acosta, M. Amatruda, G. Finzi, G. Caridi, L. Murer, M. Accetturo, E. Ranieri, G.M. Ghiggeri, M. Giordano, G. Grandaliano, L. Salviati, and L. Gesualdo. 2017. Further phenotypic heterogeneity of CoQ10 deficiency associated with steroid resistant nephrotic syndrome and novel COQ2 and COQ6 variants. *Clin Genet*. 92:224-226. - Heeringa, S.F., G. Chernin, M. Chaki, W. Zhou, A.J. Sloan, Z. Ji, L.X. Xie, L. Salviati, T.W. Hurd, V. Vega-Warner, P.D. Killen, Y. Raphael, S. Ashraf, B. Ovunc, D.S. Schoeb, H.M. McLaughlin, R. Airik, C.N. Vlangos, R. Gbadegesin, B. Hinkes, P. Saisawat, E. Trevisson, M. Doimo, A. Casarin, V. Pertegato, G. Giorgi, H. Prokisch, A. Rotig, G. Nurnberg, C. Becker, S. Wang, F. Ozaltin, R. Topaloglu, A. Bakkaloglu, S.A. Bakkaloglu, D. Muller, A. Beissert, S. Mir, A. Berdeli, S. Varpizen, M. Zenker, V. Matejas, C. Santos-Ocana, P. Navas, T. Kusakabe, A. Kispert, S. Akman, N.A. Soliman, S. Krick, P. Mundel, J. Reiser, P. Nurnberg, C.F. Clarke, R.C. Wiggins, C. Faul, and F. Hildebrandt. 2011. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. *J Clin Invest*. 121:2013-2024. - Hikmat, O., C. Tzoulis, P.M. Knappskog, S. Johansson, H. Boman, P. Sztromwasser, E. Lien, E. Brodtkorb, D. Ghezzi, and L.A. Bindoff. 2016. ADCK3 mutations with epilepsy, stroke-like episodes and ataxia: a POLG mimic? *Eur J Neurol*. 23:1188-1194. - Horvath, R., B. Czermin, S. Gulati, S. Demuth, G. Houge, A. Pyle, C. Dineiger, E.L. Blakely, A. Hassani, C. Foley, M. Brodhun, K. Storm, J. Kirschner, G.S. Gorman, H. Lochmuller, E. Holinski-Feder, R.W. Taylor, and P.F. Chinnery. 2012. Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. *J Neurol Neurosurg Psychiatry*. 83:174-178. - Ivanyi, B., G.Z. Racz, P. Gal, K. Brinyiczki, I. Bodi, T. Kalmar, Z. Maroti, and C. Bereczki. 2018. Diffuse mesangial sclerosis in a PDSS2 mutation-induced coenzyme Q10 deficiency. *Pediatr Nephrol*. 33:439-446. - Jacobsen, J.C., W. Whitford, B. Swan, J. Taylor, D.R. Love, R. Hill, S. Molyneux, P.M. George, R. Mackay, S.P. Robertson, R.G. Snell, and K. Lehnert. 2018. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q10 Deficiency in a Female Sib-Pair. *JIMD Rep.* 42:31-36. - Jakobs, B.S., L.P. van den Heuvel, R.J. Smeets, M.C. de Vries, S. Hien, T. Schaible, J.A. Smeitink, R.A. Wevers, S.B. Wortmann, and R.J. Rodenburg. 2013. A novel mutation in COQ2 leading to fatal infantile multisystem disease. *Journal of the neurological sciences*. 326:24-28. - Justine Perrin, R., C. Rousset-Rouviere, F. Garaix, A. Cano, J. Conrath, O. Boyer, and M. Tsimaratos. 2020. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. *JIMD Rep.* 54:37-44. - Korkmaz, E., B.S. Lipska-Zietkiewicz, O. Boyer, O. Gribouval, C. Fourrage, M. Tabatabaei, S. Schnaidt, S. Gucer, F. Kaymaz, M. Arici, A. Dinckan, S. Mir, A.K. Bayazit, S. Emre, A. Balat, L. Rees, R. Shroff, C. Bergmann, C. Mourani, C. Antignac, F. Ozaltin, F. Schaefer, and C. PodoNet. 2016. ADCK4-Associated Glomerulopathy Causes Adolescence-Onset FSGS. *J Am Soc Nephrol*. 27:63-68. - Koyun, M., E. Comak, and S. Akman. 2019. CoenzymeQ10 therapy in two sisters with CoQ6 mutations with long-term follow-up. *Pediatr Nephrol*. 34:737-738. - Lagier-Tourenne, C., M. Tazir, L.C. Lopez, C.M. Quinzii, M. Assoum, N. Drouot, C. Busso, S. Makri, L. Ali-Pacha, T. Benhassine, M. Anheim, D.R. Lynch, C. Thibault, F. Plewniak, L. Bianchetti, C. Tranchant, O. Poch, S. DiMauro, J.L. Mandel, M.H. Barros, M. Hirano, and M. Koenig. 2008. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. *Am J Hum Genet*. 82:661-672. - Lamperti, C., A. Naini, M. Hirano, D.C. De Vivo, E. Bertini, S. Servidei, M. Valeriani, D. Lynch, B. Banwell, M. Berg, T. Dubrovsky, C. Chiriboga, C. Angelini, E. Pegoraro, and S. DiMauro. 2003. Cerebellar ataxia and coenzyme Q10 deficiency. *Neurology*. 60:1206-1208. - Li, M., Z. Yue, H. Lin, H. Wang, H. Chen, and L. Sun. 2021. COQ2 mutation associated
isolated nephropathy in two siblings from a Chinese pedigree. *Ren Fail*. 43:97-101. - Liu, Y.T., J. Hersheson, V. Plagnol, K. Fawcett, K.E. Duberley, E. Preza, I.P. Hargreaves, A. Chalasani, M. Laura, N.W. Wood, M.M. Reilly, and H. Houlden. 2014. Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. *J Neurol Neurosurg Psychiatry*. 85:493-498. - Lolin, K., B.D. Chiodini, E. Hennaut, B. Adams, K. Dahan, and K. Ismaili. 2017. Early-onset of ADCK4 glomerulopathy with renal failure: a case report. *BMC Med Genet*. 18:28. - Lopez, L.C., M. Schuelke, C.M. Quinzii, T. Kanki, R.J. Rodenburg, A. Naini, S. Dimauro, and M. Hirano. 2006. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. *Am J Hum Genet*. 79:1125-1129. - Lu, M., Y. Zhou, Z. Wang, Z. Xia, J. Ren, and Q. Guo. 2019. Clinical phenotype, in silico and biomedical analyses, and intervention for an East Asian population-specific c.370G>A (p.G124S) COQ4 mutation in a Chinese family with CoQ10 deficiency-associated Leigh syndrome. *J Hum Genet*. 64:297-304. - Maeoka, Y., T. Doi, M. Aizawa, K. Miyasako, S. Hirashio, Y. Masuda, Y. Kishita, Y. Okazaki, K. Murayama, T. Imasawa, S. Hara, and T. Masaki. 2020. A case report of adult-onset COQ8B nephropathy presenting focal segmental glomerulosclerosis with granular swollen podocytes. *BMC Nephrol*. 21:376. - Malicdan, M.C.V., T. Vilboux, B. Ben-Zeev, J. Guo, A. Eliyahu, B. Pode-Shakked, A. Dori, S. Kakani, S.C. Chandrasekharappa, C.R. Ferreira, N. Shelestovich, D. Marek-Yagel, H. Pri-Chen, I. Blatt, J.E. Niederhuber, L. He, C. Toro, R.W. Taylor, J. Deeken, T. Yardeni, D.C. Wallace, W.A. Gahl, and Y. Anikster. 2018. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. *Hum Mutat*. 39:69-79. - Mallaret, M., M. Renaud, C. Redin, N. Drouot, J. Muller, F. Severac, J.L. Mandel, W. Hamza, T. Benhassine, L. Ali-Pacha, M. Tazir, A. Durr, M.L. Monin, C. Mignot, P. Charles, L. Van Maldergem, L. Chamard, C. Thauvin-Robinet, V. Laugel, L. Burglen, P. Calvas, M.C. Fleury, C. Tranchant, M. Anheim, and M. Koenig. 2016. Validation of a clinical practice-based algorithm for the diagnosis of autosomal recessive cerebellar ataxias based on NGS identified cases. *Journal of neurology*. 263:1314-1322. - McCarthy, H.J., A. Bierzynska, M. Wherlock, M. Ognjanovic, L. Kerecuk, S. Hegde, S. Feather, R.D. Gilbert, L. Krischock, C. Jones, M.D. Sinha, N.J. Webb, M. Christian, M.M. Williams, S. Marks, A. Koziell, G.I. Welsh, M.A. Saleem, and R.t.U.S.S. Group. 2013. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. *Clin J Am Soc Nephrol*. 8:637-648. - Mero, S., L. Salviati, V. Leuzzi, A. Rubegni, C. Calderan, F. Nardecchia, D. Galatolo, M.A. Desbats, V. Naef, F. Gemignani, M. Novelli, A. Tessa, R. Battini, F.M. Santorelli, and M. Marchese. 2021. New pathogenic variants in COQ4 cause ataxia and neurodevelopmental disorder without detectable CoQ10 deficiency in muscle or skin fibroblasts. *Journal of neurology*. 268:3381-3389. - Mignot, C., E. Apartis, A. Durr, C. Marques Lourenco, P. Charles, D. Devos, C. Moreau, P. de Lonlay, N. Drouot, L. Burglen, N. Kempf, E. Nourisson, S. Chantot-Bastaraud, A.S. Lebre, M. Rio, Y. Chaix, E. Bieth, E. Roze, I. Bonnet, S. Canaple, C. Rastel, A. Brice, A. Rotig, I. Desguerre, C. Tranchant, M. Koenig, and M. Anheim. 2013. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. *Orphanet J Rare Dis.* 8:173. - Mollet, J., A. Delahodde, V. Serre, D. Chretien, D. Schlemmer, A. Lombes, N. Boddaert, I. Desguerre, P. de Lonlay, H.O. de Baulny, A. Munnich, and A. Rotig. 2008. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. *Am J Hum Genet*. 82:623-630. - Mollet, J., I. Giurgea, D. Schlemmer, G. Dallner, D. Chretien, A. Delahodde, D. Bacq, P. de Lonlay, A. Munnich, and A. Rotig. 2007. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. *J Clin Invest*. 117:765-772. - Montini, G., C. Malaventura, and L. Salviati. 2008. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. *N Engl J Med.* 358:2849-2850. - Multiple-System Atrophy Research, C. 2013. Mutations in COQ2 in familial and sporadic multiple-system atrophy. *N Engl J Med*. 369:233-244. - Olgac, A., U. Oztoprak, C.S. Kasapkara, M. Kilic, D. Yuksel, E.B. Derinkuyu, Y. Tasci Yildiz, S. Ceylaner, and F.S. Ezgu. 2020. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. *J Pediatr Endocrinol Metab*. 33:165-170. - Park, E., Y.H. Ahn, H.G. Kang, K.H. Yoo, N.H. Won, K.B. Lee, K.C. Moon, M.W. Seong, T.R. Gwon, S.S. Park, and H.I. Cheong. 2017a. COQ6 Mutations in Children With Steroid-Resistant Focal Segmental Glomerulosclerosis and Sensorineural Hearing Loss. *Am J Kidney Dis.* 70:139-144. - Park, E., H.G. Kang, Y.H. Choi, K.B. Lee, K.C. Moon, H.J. Jeong, M. Nagata, and H.I. Cheong. 2017b. Focal segmental glomerulosclerosis and medullary nephrocalcinosis in children with ADCK4 mutations. *Pediatr Nephrol*. 32:1547-1554. - Pineda, M., R. Montero, A. Aracil, M.M. O'Callaghan, A. Mas, C. Espinos, D. Martinez-Rubio, F. Palau, P. Navas, P. Briones, and R. Artuch. 2010. Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. *Movement disorders : official journal of the Movement Disorder Society*. 25:1262-1268. - Quinzii, C., A. Naini, L. Salviati, E. Trevisson, P. Navas, S. Dimauro, and M. Hirano. 2006. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. *Am J Hum Genet*. 78:345-349. - Quinzii, C.M., and M. Hirano. 2010. Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev. 16:183-188. - Quinzii, C.M., L.C. Lopez, R.W. Gilkerson, B. Dorado, J. Coku, A.B. Naini, C. Lagier-Tourenne, M. Schuelke, L. Salviati, R. Carrozzo, F. Santorelli, S. Rahman, M. Tazir, M. Koenig, S. DiMauro, and M. Hirano. 2010. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. *FASEB journal: official publication of the Federation of American Societies for Experimental Biology*. 24:3733-3743. - Quinzii, C.M., L.C. Lopez, J. Von-Moltke, A. Naini, S. Krishna, M. Schuelke, L. Salviati, P. Navas, S. DiMauro, and M. Hirano. 2008. Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. *FASEB journal: official publication of the Federation of American Societies for Experimental Biology*. 22:1874-1885. - Rahman, S., I. Hargreaves, P. Clayton, and S. Heales. 2001. Neonatal presentation of coenzyme Q10 deficiency. *The Journal of pediatrics*. 139:456-458. - Romero-Moya, D., C. Santos-Ocana, J. Castano, G. Garrabou, J.A. Rodriguez-Gomez, V. Ruiz-Bonilla, C. Bueno, P. Gonzalez-Rodriguez, A. Giorgetti, E. Perdiguero, C. Prieto, C. Moren-Nunez, D.J. Fernandez-Ayala, M. Victoria Cascajo, I. Velasco, J.M. Canals, R. Montero, D. Yubero, C. Jou, J. Lopez-Barneo, F. Cardellach, P. Munoz-Canoves, R. Artuch, P. Navas, and P. Menendez. 2017. Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme O10 Deficiency. *Stem Cells*. 35:1687-1703. - Sadowski, C.E., S. Lovric, S. Ashraf, W.L. Pabst, H.Y. Gee, S. Kohl, S. Engelmann, V. Vega-Warner, H. Fang, J. Halbritter, M.J. Somers, W. Tan, S. Shril, I. Fessi, R.P. Lifton, D. Bockenhauer, S. El-Desoky, J.A. Kari, M. Zenker, M.J. Kemper, D. Mueller, H.M. Fathy, N.A. Soliman, S.S. Group, and F. Hildebrandt. 2015. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. *J Am Soc Nephrol*. 26:1279-1289. - Salviati, L., S. Sacconi, L. Murer, G. Zacchello, L. Franceschini, A.M. Laverda, G. Basso, C. Quinzii, C. Angelini, M. Hirano, A.B. Naini, P. Navas, S. DiMauro, and G. Montini. 2005. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. *Neurology*. 65:606-608. - Salviati, L., E. Trevisson, M.A. Rodriguez Hernandez, A. Casarin, V. Pertegato, M. Doimo, M. Cassina, C. Agosto, M.A. Desbats, G. Sartori, S. Sacconi, L. Memo, O. Zuffardi, R. Artuch, C. Quinzii, S. Dimauro, M. Hirano, C. Santos-Ocana, and P. Navas. 2012. Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. *J Med Genet*. 49:187-191. - Scalais, E., R. Chafai, R. Van Coster, L. Bindl, C. Nuttin, C. Panagiotaraki, S. Seneca, W. Lissens, A. Ribes, C. Geers, J. Smet, and L. De Meirleir. 2013. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). *Eur J Paediatr Neurol*. 17:625-630. - Schirinzi, T., M. Favetta, A. Romano, A. Sancesario, S. Summa, S. Minosse, G. Zanni, E. Castelli, E. Bertini, M. Petrarca, and G. Vasco. 2019. One-year outcome of coenzyme Q10 supplementation in ADCK3 ataxia (ARCA2). *Cerebellum Ataxias*. 6:15. - Sondheimer, N., S. Hewson, J.M. Cameron, G.R. Somers, J.D. Broadbent, M. Ziosi, C.M. Quinzii, and A.B. Naini. 2017. Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ10 deficiency. *Mol Genet Metab Rep.* 12:23-27. - Stanczyk, M., I. Balasz-Chmielewska, B. Lipska-Zietkiewicz, and M. Tkaczyk. 2018. CoQ10-related sustained remission of proteinuria in a child with COQ6 glomerulopathy-a case report. *Pediatr Nephrol*. 33:2383-2387. - Sun, M., A.K. Johnson, V. Nelakuditi, L. Guidugli, D. Fischer, K. Arndt, L. Ma, E. Sandford, V. Shakkottai, K. Boycott, J. Warman-Chardon, Z. Li, D. Del Gaudio, M. Burmeister, C.M. Gomez, D.J. Waggoner, and S. Das. 2019. Targeted exome analysis identifies the genetic basis
of disease in over 50% of patients with a wide range of ataxia-related phenotypes. *Genet Med*. 21:195-206. - Terracciano, A., F. Renaldo, G. Zanni, A. D'Amico, A. Pastore, S. Barresi, E.M. Valente, F. Piemonte, G. Tozzi, R. Carrozzo, M. Valeriani, R. Boldrini, E. Mercuri, F.M. Santorelli, and E. Bertini. 2012. The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children. *Eur J Paediatr Neurol*. 16:248-256. - Theunissen, T.E.J., M. Nguyen, R. Kamps, A.T. Hendrickx, S. Sallevelt, R.W.H. Gottschalk, C.M. Calis, A.P.M. Stassen, B. de Koning, E.N.M. Mulder-Den Hartog, K. Schoonderwoerd, S.A. Fuchs, Y. Hilhorst-Hofstee, M. de Visser, J. Vanoevelen, R. Szklarczyk, M. Gerards, I.F.M. de Coo, D. Hellebrekers, and H.J.M. Smeets. 2018. Whole Exome Sequencing Is the Preferred Strategy to Identify the Genetic Defect in Patients With a Probable or Possible Mitochondrial Cause. *Front Genet*. 9:400. - Traschutz, A., T. Schirinzi, L. Laugwitz, N.H. Murray, C.A. Bingman, S. Reich, J. Kern, A. Heinzmann, G. Vasco, E. Bertini, G. Zanni, A. Durr, S. Magri, F. Taroni, A. Malandrini, J. Baets, P. de Jonghe, W. de Ridder, M. Bereau, S. Demuth, C. Ganos, A.N. Basak, H. Hanagasi, S.H. Kurul, B. Bender, L. Schols, U. Grasshoff, T. Klopstock, R. Horvath, B. van de Warrenburg, L. Burglen, C. Rougeot, C. Ewenczyk, M. Koenig, F.M. Santorelli, M. Anheim, R.P. Munhoz, T. Haack, F. Distelmaier, D.J. - Pagliarini, H. Puccio, and M. Synofzik. 2020. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. *Annals of neurology*. 88:251-263. - Wang, F., Y. Zhang, J. Mao, Z. Yu, Z. Yi, L. Yu, J. Sun, X. Wei, F. Ding, H. Zhang, H. Xiao, Y. Yao, W. Tan, S. Lovric, J. Ding, and F. Hildebrandt. 2017a. Spectrum of mutations in Chinese children with steroid-resistant nephrotic syndrome. *Pediatr Nephrol*. 32:1181-1192. - Wang, N., Y. Zheng, L. Zhang, X. Tian, Y. Fang, M. Qi, J. Du, S. Chen, S. Chen, J. Li, B. Shen, and L. Wang. 2021. A Family Segregating Lethal Primary Coenzyme Q10 Deficiency Due to Two Novel COQ6 Variants. *Front Genet*. 12:811833. - Wang, Y., C. Smith, J.S. Parboosingh, A. Khan, M. Innes, and S. Hekimi. 2017b. Pathogenicity of two COQ7 mutations and responses to 2,4-dihydroxybenzoate bypass treatment. *J Cell Mol Med*. - Yang, J., Y. Yang, and Z. Hu. 2018. A novel ADCK4 mutation in a Chinese family with ADCK4-Associated glomerulopathy. *Biochem Biophys Res Commun.* 506:444-449. - Yu, M.H., M.H. Tsang, S. Lai, M.S. Ho, D.M.L. Tse, B. Willis, A.K. Kwong, Y.Y. Chou, S.P. Lin, C.M. Quinzii, W.L. Hwu, Y.H. Chien, P.L. Kuo, V.C. Chan, C. Tsoi, S.C. Chong, R.J.T. Rodenburg, J. Smeitink, C.C. Mak, K.S. Yeung, J.L. Fung, W. Lam, J. Hui, N.C. Lee, C.W. Fung, and B.H. Chung. 2019. Primary coenzyme Q10 deficiency-7: expanded phenotypic spectrum and a founder mutation in southern Chinese. *NPJ Genom Med.* 4:18. - Zhai, S.B., L. Zhang, B.C. Sun, Y. Zhang, and Q.S. Ma. 2020. Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. *BMC Nephrol*. 21:406. - Zhang, H., F. Wang, X. Liu, X. Zhong, Y. Yao, and H. Xiao. 2017. Steroid-resistant nephrotic syndrome caused by co-inheritance of mutations at NPHS1 and ADCK4 genes in two Chinese siblings. *Intractable Rare Dis Res.* 6:299-303. - Zhang, L., T. Ashizawa, and D. Peng. 2020. Primary coenzyme Q10 deficiency due to COQ8A gene mutations. *Mol Genet Genomic Med.* 8:e1420. - Ziosi, M., I. Di Meo, G. Kleiner, X.H. Gao, E. Barca, M.J. Sanchez-Quintero, S. Tadesse, H. Jiang, C. Qiao, R.J. Rodenburg, E. Scalais, M. Schuelke, B. Willard, M. Hatzoglou, V. Tiranti, and C.M. Quinzii. 2017. Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway. *EMBO Mol Med*. 9:96-111.